CONSISTENT NON-GAUSSIAN PSEUDO MAXIMUM LIKELIHOOD ESTIMATORS OF SPATIAL AUTOREGRESSIVE MODELS

IF 1 4区 经济学 Q3 ECONOMICS Econometric Theory Pub Date : 2023-02-06 DOI:10.1017/s0266466623000026
Fei Jin, Yuqin Wang
{"title":"CONSISTENT NON-GAUSSIAN PSEUDO MAXIMUM LIKELIHOOD ESTIMATORS OF SPATIAL AUTOREGRESSIVE MODELS","authors":"Fei Jin, Yuqin Wang","doi":"10.1017/s0266466623000026","DOIUrl":null,"url":null,"abstract":"This paper studies the non-Gaussian pseudo maximum likelihood (PML) estimation of a spatial autoregressive (SAR) model with SAR disturbances. If the spatial weights matrix \n\n \n \n \n$M_{n}$\n\n \n for the SAR disturbances is normalized to have row sums equal to 1 or the model reduces to a SAR model with no SAR process of disturbances, the non-Gaussian PML estimator (NGPMLE) for model parameters except the intercept term and the variance \n\n \n \n \n$\\sigma _{0}^{2}$\n\n \n of independent and identically distributed (i.i.d.) innovations in the model is consistent. Without row normalization of \n\n \n \n \n$M_{n}$\n\n \n , the symmetry of i.i.d. innovations leads to consistent NGPMLE for model parameters except \n\n \n \n \n$\\sigma _{0}^{2}$\n\n \n . With neither row normalization of \n\n \n \n \n$M_{n}$\n\n \n nor the symmetry of innovations, a location parameter can be added to the non-Gaussian pseudo likelihood function to achieve consistent estimation of model parameters except \n\n \n \n \n$\\sigma _{0}^{2}$\n\n \n . The NGPMLE with no added parameter can have a significant efficiency improvement upon the Gaussian PML estimator and the generalized method of moments estimator based on linear and quadratic moments. We also propose a non-Gaussian score test for spatial dependence, which can be locally more powerful than the Gaussian score test. Monte Carlo results show that our NGPMLE with no added parameter and the score test based on it perform well in finite samples.","PeriodicalId":49275,"journal":{"name":"Econometric Theory","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Theory","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/s0266466623000026","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the non-Gaussian pseudo maximum likelihood (PML) estimation of a spatial autoregressive (SAR) model with SAR disturbances. If the spatial weights matrix $M_{n}$ for the SAR disturbances is normalized to have row sums equal to 1 or the model reduces to a SAR model with no SAR process of disturbances, the non-Gaussian PML estimator (NGPMLE) for model parameters except the intercept term and the variance $\sigma _{0}^{2}$ of independent and identically distributed (i.i.d.) innovations in the model is consistent. Without row normalization of $M_{n}$ , the symmetry of i.i.d. innovations leads to consistent NGPMLE for model parameters except $\sigma _{0}^{2}$ . With neither row normalization of $M_{n}$ nor the symmetry of innovations, a location parameter can be added to the non-Gaussian pseudo likelihood function to achieve consistent estimation of model parameters except $\sigma _{0}^{2}$ . The NGPMLE with no added parameter can have a significant efficiency improvement upon the Gaussian PML estimator and the generalized method of moments estimator based on linear and quadratic moments. We also propose a non-Gaussian score test for spatial dependence, which can be locally more powerful than the Gaussian score test. Monte Carlo results show that our NGPMLE with no added parameter and the score test based on it perform well in finite samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间自回归模型的一致非高斯伪极大似然估计
本文研究了具有SAR扰动的空间自回归(SAR)模型的非高斯伪最大似然(PML)估计。如果SAR扰动的空间权重矩阵$M_{n}$被归一化为具有等于1的行和,除了模型中独立和同分布(i.i.d.)创新的截距项和方差$\sigma\{0}^{2}$之外,模型参数的非高斯PML估计器(NGPMLE)是一致的。在没有$M_{n}$的行规范化的情况下,i.i.d.创新的对称性导致除了$\sigma\{0}^{2}$之外的模型参数的一致NGPMLE。在既没有$M_{n}$的行归一化也没有创新的对称性的情况下,可以将位置参数添加到非高斯伪似然函数中,以实现除$\sigma\{0}^{2}$之外的模型参数的一致估计。与高斯PML估计和基于线性矩和二次矩的广义矩估计方法相比,不添加参数的NGPMLE可以显著提高效率。我们还提出了一种空间相关性的非高斯分数测试,它可以比高斯分数测试在局部更强大。蒙特卡罗结果表明,我们的无添加参数的NGPMLE和基于它的分数测试在有限样本中表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometric Theory
Econometric Theory MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
1.90
自引率
0.00%
发文量
52
审稿时长
>12 weeks
期刊介绍: Since its inception, Econometric Theory has aimed to endow econometrics with an innovative journal dedicated to advance theoretical research in econometrics. It provides a centralized professional outlet for original theoretical contributions in all of the major areas of econometrics, and all fields of research in econometric theory fall within the scope of ET. In addition, ET fosters the multidisciplinary features of econometrics that extend beyond economics. Particularly welcome are articles that promote original econometric research in relation to mathematical finance, stochastic processes, statistics, and probability theory, as well as computationally intensive areas of economics such as modern industrial organization and dynamic macroeconomics.
期刊最新文献
INFERENCE IN MILDLY EXPLOSIVE AUTOREGRESSIONS UNDER UNCONDITIONAL HETEROSKEDASTICITY EFFICIENCY IN ESTIMATION UNDER MONOTONIC ATTRITION WELFARE ANALYSIS VIA MARGINAL TREATMENT EFFECTS APPLICATIONS OF FUNCTIONAL DEPENDENCE TO SPATIAL ECONOMETRICS IDENTIFICATION AND STATISTICAL DECISION THEORY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1