Pat Pataranutaporn, Ruby Liu, Ed Finn, Pattie Maes
{"title":"Influencing human–AI interaction by priming beliefs about AI can increase perceived trustworthiness, empathy and effectiveness","authors":"Pat Pataranutaporn, Ruby Liu, Ed Finn, Pattie Maes","doi":"10.1038/s42256-023-00720-7","DOIUrl":null,"url":null,"abstract":"As conversational agents powered by large language models become more human-like, users are starting to view them as companions rather than mere assistants. Our study explores how changes to a person’s mental model of an AI system affects their interaction with the system. Participants interacted with the same conversational AI, but were influenced by different priming statements regarding the AI’s inner motives: caring, manipulative or no motives. Here we show that those who perceived a caring motive for the AI also perceived it as more trustworthy, empathetic and better-performing, and that the effects of priming and initial mental models were stronger for a more sophisticated AI model. Our work also indicates a feedback loop in which the user and AI reinforce the user’s mental model over a short time; further work should investigate long-term effects. The research highlights the importance of how AI systems are introduced can notably affect the interaction and how the AI is experienced. The recent accessibility of large language models brought them into contact with a large number of users and, due to the social nature of language, it is hard to avoid prescribing human characteristics such as intentions to a chatbot. Pataranutaporn and colleagues investigated how framing a bot as helpful or manipulative can influence this perception and the behaviour of the humans that interact with it.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"5 10","pages":"1076-1086"},"PeriodicalIF":18.8000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-023-00720-7","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
As conversational agents powered by large language models become more human-like, users are starting to view them as companions rather than mere assistants. Our study explores how changes to a person’s mental model of an AI system affects their interaction with the system. Participants interacted with the same conversational AI, but were influenced by different priming statements regarding the AI’s inner motives: caring, manipulative or no motives. Here we show that those who perceived a caring motive for the AI also perceived it as more trustworthy, empathetic and better-performing, and that the effects of priming and initial mental models were stronger for a more sophisticated AI model. Our work also indicates a feedback loop in which the user and AI reinforce the user’s mental model over a short time; further work should investigate long-term effects. The research highlights the importance of how AI systems are introduced can notably affect the interaction and how the AI is experienced. The recent accessibility of large language models brought them into contact with a large number of users and, due to the social nature of language, it is hard to avoid prescribing human characteristics such as intentions to a chatbot. Pataranutaporn and colleagues investigated how framing a bot as helpful or manipulative can influence this perception and the behaviour of the humans that interact with it.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.