Fe-doping-induced cation substitution and anion vacancies promoting Co3O4 hexagonal nanosheets for efficient overall water splitting

Peifang Guo , Lingxia Shi , Da Liu , Xinqiang Wang , Fan Gao , Yuan Ha , Jie Yin , Miao Liu , Hongge Pan , Renbing Wu
{"title":"Fe-doping-induced cation substitution and anion vacancies promoting Co3O4 hexagonal nanosheets for efficient overall water splitting","authors":"Peifang Guo ,&nbsp;Lingxia Shi ,&nbsp;Da Liu ,&nbsp;Xinqiang Wang ,&nbsp;Fan Gao ,&nbsp;Yuan Ha ,&nbsp;Jie Yin ,&nbsp;Miao Liu ,&nbsp;Hongge Pan ,&nbsp;Renbing Wu","doi":"10.1016/j.mtcata.2023.100002","DOIUrl":null,"url":null,"abstract":"<div><p>Water electrolysis is a green technology for hydrogen fuel production, but greatly hampered by the slow kinetics of the anodic oxygen evolution reaction (OER) and the cathodic hydrogen evolution reaction (HER). In this work, we report an efficient strategy to simultaneously promote OER and HER performance on Co<sub>3</sub>O<sub>4</sub> hexagonal nanosheets via Fe-doping-induced cation substitution and anion vacancies. Benefiting from the integrated advantages of well-defined ultrathin nanosheets, abundant vacancies, and unique three-dimensional electrode configuration, the optimized Fe-doped Co<sub>3</sub>O<sub>4</sub> hexagonal nanosheets/nickel foam (Fe<sub>0.4</sub>Co<sub>2.6</sub>O<sub>4</sub> HNSs/NF) can achieve overpotentials of 328 mV at 100 mA cm<sup>−2</sup> for OER and 315 mV at 500 mA cm<sup>−2</sup> for HER, respectively, which is comparable to those of the benchmark noble electrocatalysts. More importantly, the Fe<sub>0.4</sub>Co<sub>2.6</sub>O<sub>4</sub> HNSs/NF-assembled electrolyzer for overall water splitting can deliver a current density of 100 mA cm<sup>−2</sup> at a cell voltage as low as 1.66 V and work steadily at 50 mA cm<sup>−2</sup> with a negligible fading up to 140 h.</p></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"1 ","pages":"Article 100002"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X23000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Water electrolysis is a green technology for hydrogen fuel production, but greatly hampered by the slow kinetics of the anodic oxygen evolution reaction (OER) and the cathodic hydrogen evolution reaction (HER). In this work, we report an efficient strategy to simultaneously promote OER and HER performance on Co3O4 hexagonal nanosheets via Fe-doping-induced cation substitution and anion vacancies. Benefiting from the integrated advantages of well-defined ultrathin nanosheets, abundant vacancies, and unique three-dimensional electrode configuration, the optimized Fe-doped Co3O4 hexagonal nanosheets/nickel foam (Fe0.4Co2.6O4 HNSs/NF) can achieve overpotentials of 328 mV at 100 mA cm−2 for OER and 315 mV at 500 mA cm−2 for HER, respectively, which is comparable to those of the benchmark noble electrocatalysts. More importantly, the Fe0.4Co2.6O4 HNSs/NF-assembled electrolyzer for overall water splitting can deliver a current density of 100 mA cm−2 at a cell voltage as low as 1.66 V and work steadily at 50 mA cm−2 with a negligible fading up to 140 h.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fe掺杂诱导的阳离子取代和阴离子空位促进Co3O4六角纳米片的有效整体水分解
水电解是一种用于氢燃料生产的绿色技术,但阳极析氧反应(OER)和阴极析氢反应(HER)的缓慢动力学大大阻碍了其发展。在这项工作中,我们报道了一种有效的策略,通过Fe掺杂诱导的阳离子取代和阴离子空位,同时提高Co3O4六边形纳米片上的OER和HER性能。得益于定义明确的超薄纳米片、丰富的空位和独特的三维电极配置的综合优势,优化的Fe掺杂Co3O4六角纳米片/泡沫镍(Fe0.4Co2.6O4 HNSs/NF)在100 mA cm−2时OER可实现328 mV的过电势,在500 mA cm−2中HER可实现315 mV的过电位,其可与基准贵金属电催化剂的那些相比较。更重要的是,用于整体水分解的Fe0.4Co2.6O4 HNSs/NF组装电解槽可以在低至1.66 V的电池电压下提供100 mA cm−2的电流密度,并在50 mA cm−2中稳定工作,在140小时内可忽略不计的衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Facet engineering of Weyl semimetals for efficient hydrogen evolution reaction Coupling cobalt single-atom catalyst with recyclable LiBr redox mediator enables stable LiOH-based Li-O2 batteries Modulating selectivity and stability of the direct seawater electrolysis for sustainable green hydrogen production Oxygen vacancy-mediated high-entropy oxide electrocatalysts for efficient oxygen evolution reaction Multilayered molybdenum carbonitride MXene: Reductive defunctionalization, thermal stability, and catalysis of ammonia synthesis and decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1