System identification and state estimation of a reduced-order electrochemical model for lithium-ion batteries

IF 15 1区 工程技术 Q1 ENERGY & FUELS Etransportation Pub Date : 2023-10-01 DOI:10.1016/j.etran.2023.100295
Yujie Wang , Xingchen Zhang , Kailong Liu , Zhongbao Wei , Xiaosong Hu , Xiaolin Tang , Zonghai Chen
{"title":"System identification and state estimation of a reduced-order electrochemical model for lithium-ion batteries","authors":"Yujie Wang ,&nbsp;Xingchen Zhang ,&nbsp;Kailong Liu ,&nbsp;Zhongbao Wei ,&nbsp;Xiaosong Hu ,&nbsp;Xiaolin Tang ,&nbsp;Zonghai Chen","doi":"10.1016/j.etran.2023.100295","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Lithium-ion batteries commonly used in electric vehicles are an indispensable part of the development process of decarbonization, electrification, and intelligence in transportation. From intelligent designing, manufacturing to controlling, an intelligent battery management system<span> plays a crucial role in the long life, high efficiency, and safe operation of lithium-ion batteries. As a first-principle model, the electrochemical parameters of the electrochemical model have physical meanings and reflect the internal state of the lithium-ion batteries. The application of electrochemical models in an advanced intelligent battery management system is a future trend that promises to mitigate battery life degradation and prevent safety incidents. The reduced-order electrochemical model is expected to alleviate the requirements of advanced battery management systems for high accuracy and fast computing of lithium-ion battery models. However, the existing model order reduction methods have the drawbacks of high computational complexity and small application scope, so that inconvenient to apply onboard. In order to solve the existing obstacles, this paper applies the pseudo-spectral method to solve the solid-phase diffusion equation, while the liquid-phase concentration equation is simplified by the Galerkin method. Subsequently, a </span></span>particle swarm optimization algorithm is used to identify 11 parameters of the electrochemical model. To further improve the accuracy of the electrochemical model, the above system identification method is applied to segment identification, especially for high or low state-of-charge (SoC) conditions in this study. Finally, based upon the derived model, estimation of SoC is performed using a particle filter. The results show that the proposed reduced-order electrochemical model achieves a low </span>Mean Absolute Error (MAE) of 8.4 mV and a MAE of 0.54 % on estimation of SoC based on the envisaged particle filter. This work is expected to provide the basis for the subsequent development of lithium-ion battery electrochemical models with smaller identification parameters and faster identification processes.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":null,"pages":null},"PeriodicalIF":15.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259011682300070X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries commonly used in electric vehicles are an indispensable part of the development process of decarbonization, electrification, and intelligence in transportation. From intelligent designing, manufacturing to controlling, an intelligent battery management system plays a crucial role in the long life, high efficiency, and safe operation of lithium-ion batteries. As a first-principle model, the electrochemical parameters of the electrochemical model have physical meanings and reflect the internal state of the lithium-ion batteries. The application of electrochemical models in an advanced intelligent battery management system is a future trend that promises to mitigate battery life degradation and prevent safety incidents. The reduced-order electrochemical model is expected to alleviate the requirements of advanced battery management systems for high accuracy and fast computing of lithium-ion battery models. However, the existing model order reduction methods have the drawbacks of high computational complexity and small application scope, so that inconvenient to apply onboard. In order to solve the existing obstacles, this paper applies the pseudo-spectral method to solve the solid-phase diffusion equation, while the liquid-phase concentration equation is simplified by the Galerkin method. Subsequently, a particle swarm optimization algorithm is used to identify 11 parameters of the electrochemical model. To further improve the accuracy of the electrochemical model, the above system identification method is applied to segment identification, especially for high or low state-of-charge (SoC) conditions in this study. Finally, based upon the derived model, estimation of SoC is performed using a particle filter. The results show that the proposed reduced-order electrochemical model achieves a low Mean Absolute Error (MAE) of 8.4 mV and a MAE of 0.54 % on estimation of SoC based on the envisaged particle filter. This work is expected to provide the basis for the subsequent development of lithium-ion battery electrochemical models with smaller identification parameters and faster identification processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂离子电池降阶电化学模型的系统辨识与状态估计
电动汽车常用的锂离子电池是交通运输向脱碳、电气化、智能化发展过程中不可缺少的重要组成部分。从智能设计、智能制造到智能控制,智能电池管理系统对锂离子电池的长寿命、高效率、安全运行起着至关重要的作用。电化学模型作为第一性原理模型,其电化学参数具有物理意义,反映了锂离子电池的内部状态。电化学模型在先进的智能电池管理系统中的应用是未来的趋势,有望缓解电池寿命下降和防止安全事故。简化的电化学模型有望缓解先进电池管理系统对锂离子电池模型的高精度和快速计算的要求。然而,现有的模型降阶方法存在计算量大、适用范围小的缺点,不便于板载应用。为了解决存在的障碍,本文采用伪谱法求解固相扩散方程,液相浓度方程采用伽辽金法进行简化。随后,利用粒子群优化算法对电化学模型的11个参数进行了辨识。为了进一步提高电化学模型的准确性,本研究将上述系统识别方法应用于分段识别,特别是在高荷电状态(SoC)或低荷电状态(SoC)条件下。最后,在导出模型的基础上,采用粒子滤波方法对SoC进行估计。结果表明,基于所设想的粒子滤波器,所提出的降阶电化学模型获得了8.4 mV的低平均绝对误差(MAE)和0.54%的低平均绝对误差。这项工作有望为后续开发具有更小识别参数和更快识别过程的锂离子电池电化学模型提供基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Etransportation
Etransportation Engineering-Automotive Engineering
CiteScore
19.80
自引率
12.60%
发文量
57
审稿时长
39 days
期刊介绍: eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation. The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment. Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.
期刊最新文献
Enhancing lithium-ion battery monitoring: A critical review of diverse sensing approaches Enhancing capacity estimation of retired electric vehicle lithium-ion batteries through transfer learning from electrochemical impedance spectroscopy Towards real-world state of health estimation: Part 2, system level method using electric vehicle field data A comparative study on mechanical-electrical-thermal characteristics and failure mechanism of LFP/NMC/LTO batteries under mechanical abuse Global electric vehicle charging station site evaluation and placement based on large-scale empirical data from Germany
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1