{"title":"Novel multiplexer circuit design in quantum-dot cellular automata technology","authors":"Abdalhossein Rezai , Davood Aliakbari , Asghar Karimi","doi":"10.1016/j.nancom.2023.100435","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The QCA<span> technology is a strong contender for replacing CMOS technology in the design of nanoscale<span> digital circuits. The goal of this paper’s design is to increase the performance of the </span></span></span>multiplexer (MUX) circuit. The design strategy is using a cost-effective architecture and path-planning design, which can reduce design costs. This paper presents an efficient circuit for 2-to-1 QCA MUX. Then, two circuits including 4-to-1 and 8-to-1 QCA MUX circuits are developed using this 2-to-1 QCA MUX circuit. The functionality of these circuits is investigated using QCADesigner tool version 2.0.3. The designed 2-to-1 QCA MUX circuit has 0.5 clock cycles delay, </span><span><math><mrow><mn>0</mn><mo>.</mo><mn>01</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span><sup>2</sup> area and 15 cells. Moreover, the suggested 4-to-1 (8-to-1) QCA MUX circuit has 53 (163) cells, 0.06 (0.18) <span><math><mi>μ</mi></math></span>m<sup>2</sup><span> area and 1 (3.75) clock cycles delay. The energy dissipation (Area-delay cost) of the proposed 2-to-1, 4-to-1, and 8-to-1 MUX at 1</span><span><math><msup><mrow></mrow><mrow><mi>o</mi></mrow></msup></math></span>K is 8.91 mev (0.04), 17.9 mev (0.96), and 39.3 mev (8.82), respectively. The comparison results demonstrate that the designed circuits provide benefits compared to other MUX circuits.</p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"35 ","pages":"Article 100435"},"PeriodicalIF":2.9000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778923000017","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3
Abstract
The QCA technology is a strong contender for replacing CMOS technology in the design of nanoscale digital circuits. The goal of this paper’s design is to increase the performance of the multiplexer (MUX) circuit. The design strategy is using a cost-effective architecture and path-planning design, which can reduce design costs. This paper presents an efficient circuit for 2-to-1 QCA MUX. Then, two circuits including 4-to-1 and 8-to-1 QCA MUX circuits are developed using this 2-to-1 QCA MUX circuit. The functionality of these circuits is investigated using QCADesigner tool version 2.0.3. The designed 2-to-1 QCA MUX circuit has 0.5 clock cycles delay, 2 area and 15 cells. Moreover, the suggested 4-to-1 (8-to-1) QCA MUX circuit has 53 (163) cells, 0.06 (0.18) m2 area and 1 (3.75) clock cycles delay. The energy dissipation (Area-delay cost) of the proposed 2-to-1, 4-to-1, and 8-to-1 MUX at 1K is 8.91 mev (0.04), 17.9 mev (0.96), and 39.3 mev (8.82), respectively. The comparison results demonstrate that the designed circuits provide benefits compared to other MUX circuits.
期刊介绍:
The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published.
Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.