Modelling of novel ultra-efficient single layer nano-scale adder-subtractor in QCA nanotechnology

IF 2.9 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Nano Communication Networks Pub Date : 2025-01-27 DOI:10.1016/j.nancom.2025.100564
Javeed Iqbal Reshi, M․Tariq Banday, Farooq A. Khanday
{"title":"Modelling of novel ultra-efficient single layer nano-scale adder-subtractor in QCA nanotechnology","authors":"Javeed Iqbal Reshi,&nbsp;M․Tariq Banday,&nbsp;Farooq A. Khanday","doi":"10.1016/j.nancom.2025.100564","DOIUrl":null,"url":null,"abstract":"<div><div>Quantum dot Cellular Automata is considered as promising alternative technology for designing nanoscale circuits. It operates on the principle derived from quantum mechanics and utilizes quantum dots as building blocks for information processing and computations. QCA offers numerous benefits including ultra-low energy dissipation, enhanced performance, high device density, resistance to scaling limitations and inherent parallelism. Previous realizations of Quantum Dot Cellular Automata (QCA) based-adder and subtractor circuits faced significant challenges like cell count, complexity and energy dissipation. This paper, proposes novel designs of adder-subtractor circuits based on novel 3-input XOR gate. The proposed circuits do not require any rotated cells or crossovers and are based on single layer design that eases the manufacturability. In addition, the proposed designs demonstrate significant reduction in cell count, complexity and energy dissipation compared to best known prior counterparts. Specifically, the reductions are 14.28 %, 42.85 %, and 56.66 % for adder, subtractor and adder-subtractor respectively. These improvements signify a substantial gain in circuit efficiency. The functional validity of the proposed layouts is verified using QCADesigner 2.0.3 simulator. The power efficiency analysis has been performed using QCADesigner-E tool, which enables the designer to analyse, optimize and validate the power consumption characteristics of the proposed circuits. The overall energy consumption of adder, subtractor and adder-subtractor is reported to be 1.10e-002 eV, 1.12e-002 eV, 1.06e-002 eV respectively. Additionally, the average energy dissipation of 9.96e-004 eV, 1.02e-003 eV, 9.63e-004 eV was observed using QCADesigner-E tool.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"43 ","pages":"Article 100564"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187877892500002X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum dot Cellular Automata is considered as promising alternative technology for designing nanoscale circuits. It operates on the principle derived from quantum mechanics and utilizes quantum dots as building blocks for information processing and computations. QCA offers numerous benefits including ultra-low energy dissipation, enhanced performance, high device density, resistance to scaling limitations and inherent parallelism. Previous realizations of Quantum Dot Cellular Automata (QCA) based-adder and subtractor circuits faced significant challenges like cell count, complexity and energy dissipation. This paper, proposes novel designs of adder-subtractor circuits based on novel 3-input XOR gate. The proposed circuits do not require any rotated cells or crossovers and are based on single layer design that eases the manufacturability. In addition, the proposed designs demonstrate significant reduction in cell count, complexity and energy dissipation compared to best known prior counterparts. Specifically, the reductions are 14.28 %, 42.85 %, and 56.66 % for adder, subtractor and adder-subtractor respectively. These improvements signify a substantial gain in circuit efficiency. The functional validity of the proposed layouts is verified using QCADesigner 2.0.3 simulator. The power efficiency analysis has been performed using QCADesigner-E tool, which enables the designer to analyse, optimize and validate the power consumption characteristics of the proposed circuits. The overall energy consumption of adder, subtractor and adder-subtractor is reported to be 1.10e-002 eV, 1.12e-002 eV, 1.06e-002 eV respectively. Additionally, the average energy dissipation of 9.96e-004 eV, 1.02e-003 eV, 9.63e-004 eV was observed using QCADesigner-E tool.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Communication Networks
Nano Communication Networks Mathematics-Applied Mathematics
CiteScore
6.00
自引率
6.90%
发文量
14
期刊介绍: The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published. Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.
期刊最新文献
Modelling of novel ultra-efficient single layer nano-scale adder-subtractor in QCA nanotechnology Energy harvesting-based thermal aware routing protocol for lung terahertz nanosensor networks Design of triband circularly polarized hexagon shaped patch antenna using optimized Siamese heterogeneous convolutional neural networks for 5G wireless communication system Internet of harvester nano things: A future prospects Towards a scalable and efficient full- adder structure in atomic silicon dangling band technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1