{"title":"Energy harvesting-based thermal aware routing protocol for lung terahertz nanosensor networks","authors":"Juan Xu, Xin Li, Jiali Kan, Ruofan Wang","doi":"10.1016/j.nancom.2025.100563","DOIUrl":null,"url":null,"abstract":"<div><div>Lung damage caused by viral infections such as COVID-19, MERS, and SARS can lead to serious or even fatal conditions. Therefore, monitoring lung diseases at the nanoscale has great potential for development. Some biomedical sensors implanted in the human body can generate electromagnetic radiation, and excessive emission power may pose a serious threat to tissues in the human body. Therefore, while constructing lung wireless nanosensor network (WNSN), we need to consider the limited energy storage and potential thermal effects of nanosensors. In this paper, an energy harvesting-based thermal aware routing (EHTAR) protocol is proposed. The protocol introduces a piezoelectric energy harvesting system to charge the nanonodes and proposes a sleep-wake mechanism for node temperature and energy to establish a next-hop link cost function using node temperature, remaining energy, and distance as cost factors. Simulation results demonstrate that EHTAR makes the node temperature not exceed the set threshold and the energy harvesting mechanism can greatly extend the network survival, so EHTAR can be better applied in the lung health monitoring scenario.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"43 ","pages":"Article 100563"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778925000018","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Lung damage caused by viral infections such as COVID-19, MERS, and SARS can lead to serious or even fatal conditions. Therefore, monitoring lung diseases at the nanoscale has great potential for development. Some biomedical sensors implanted in the human body can generate electromagnetic radiation, and excessive emission power may pose a serious threat to tissues in the human body. Therefore, while constructing lung wireless nanosensor network (WNSN), we need to consider the limited energy storage and potential thermal effects of nanosensors. In this paper, an energy harvesting-based thermal aware routing (EHTAR) protocol is proposed. The protocol introduces a piezoelectric energy harvesting system to charge the nanonodes and proposes a sleep-wake mechanism for node temperature and energy to establish a next-hop link cost function using node temperature, remaining energy, and distance as cost factors. Simulation results demonstrate that EHTAR makes the node temperature not exceed the set threshold and the energy harvesting mechanism can greatly extend the network survival, so EHTAR can be better applied in the lung health monitoring scenario.
期刊介绍:
The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published.
Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.