A novel QCA circuit-switched network with power dissipation analysis for nano communication applications

IF 2.9 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Nano Communication Networks Pub Date : 2023-03-01 DOI:10.1016/j.nancom.2023.100438
Mohsen Vahabi , Ehsan Rahimi , Pavel Lyakhov , Akira Otsuki
{"title":"A novel QCA circuit-switched network with power dissipation analysis for nano communication applications","authors":"Mohsen Vahabi ,&nbsp;Ehsan Rahimi ,&nbsp;Pavel Lyakhov ,&nbsp;Akira Otsuki","doi":"10.1016/j.nancom.2023.100438","DOIUrl":null,"url":null,"abstract":"<div><p>Today, communication links and networks are essential in transmitting data and information. Moreover, information sharing in communication devices and networks has become necessary, routine, and unavoidable. Consequently, designing and manufacturing high-speed nano-scale devices with ultra-low power consumption is very important. Among the emerging paradigms in nanotechnologies, quantum-dot cellular automata<span> (QCA) is very popular in communication sciences. In the present study, we optimize the design and implementation of a QCA crossbar switch and use it in transmitter and receiver circuits. Subsequently, a circuit-switched network in QCA technology is implemented using these devices. All the designed circuits are coplanar with the minimum number of cells, optimal area and latency, and low power consumptions, which employ standard QCA design rules and show superiority and advantages compared to the previous designs.</span></p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"35 ","pages":"Article 100438"},"PeriodicalIF":2.9000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778923000042","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

Today, communication links and networks are essential in transmitting data and information. Moreover, information sharing in communication devices and networks has become necessary, routine, and unavoidable. Consequently, designing and manufacturing high-speed nano-scale devices with ultra-low power consumption is very important. Among the emerging paradigms in nanotechnologies, quantum-dot cellular automata (QCA) is very popular in communication sciences. In the present study, we optimize the design and implementation of a QCA crossbar switch and use it in transmitter and receiver circuits. Subsequently, a circuit-switched network in QCA technology is implemented using these devices. All the designed circuits are coplanar with the minimum number of cells, optimal area and latency, and low power consumptions, which employ standard QCA design rules and show superiority and advantages compared to the previous designs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于纳米通信应用的具有功耗分析的新型QCA电路交换网络
今天,通信链路和网络在传输数据和信息方面至关重要。此外,通信设备和网络中的信息共享已经成为必要的、常规的和不可避免的。因此,设计和制造具有超低功耗的高速纳米级器件是非常重要的。在纳米技术的新兴范式中,量子点细胞自动机(QCA)在通信科学中非常流行。在本研究中,我们优化了QCA交叉开关的设计和实现,并将其用于发射机和接收机电路。随后,使用这些设备实现了QCA技术中的电路交换网络。所有设计的电路都是共面的,具有最小的单元数量、最佳的面积和延迟以及低功耗,采用了标准的QCA设计规则,与以前的设计相比显示出了优越性和优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Communication Networks
Nano Communication Networks Mathematics-Applied Mathematics
CiteScore
6.00
自引率
6.90%
发文量
14
期刊介绍: The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published. Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.
期刊最新文献
Estimating channel coefficients for complex topologies in 3D diffusion channel using artificial neural networks Terahertz beam shaping using space-time phase-only coded metasurfaces All-optical AND, NAND, OR, NOR and NOT logic gates using two nested microrings in a racetrack ring resonator End-to-end synaptic molecular communication with astrocytic feedback and generic three-state receptors Design of ternary reversible Feynman and Toffoli gates in ternary quantum-dot cellular automata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1