User structural information in priority-based ranking for top-N recommendation

Mohammad Majid Fayezi, Alireza Hashemi Golpayegani
{"title":"User structural information in priority-based ranking for top-N recommendation","authors":"Mohammad Majid Fayezi,&nbsp;Alireza Hashemi Golpayegani","doi":"10.1007/s43674-022-00050-y","DOIUrl":null,"url":null,"abstract":"<div><p>The recommender system is a set of data recovery tools and techniques used to recommend items to users based on their selection. To improve the accuracy of the recommendation, the use of additional information (e.g., social information, trust, item tags, etc.) in addition to user-item ranking data has been an active area of research for the past decade.</p><p>In this paper, we present a new method for recommending top-N items, which uses structural information and trust among users within the social network and extracts the implicit connections between users and uses them in the item recommendation process. The proposed method has seven main steps: (1) extract items liked by neighbors, (ii) constructing item features for neighbors, (iii) extract embedding trust features for neighbors, (iv) create user-feature matrix, (v) calculate user’s priority, (vi) calculate item’s priority and finally, (vii) recommend top-N items. We implement the proposed method with three datasets for recommendations. We compare our results with some advanced ranking methods and observe that the accuracy of our method for all users and cold-start users improves. Our method can also create more items for cold-start users in the list of recommended items.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43674-022-00050-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-022-00050-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The recommender system is a set of data recovery tools and techniques used to recommend items to users based on their selection. To improve the accuracy of the recommendation, the use of additional information (e.g., social information, trust, item tags, etc.) in addition to user-item ranking data has been an active area of research for the past decade.

In this paper, we present a new method for recommending top-N items, which uses structural information and trust among users within the social network and extracts the implicit connections between users and uses them in the item recommendation process. The proposed method has seven main steps: (1) extract items liked by neighbors, (ii) constructing item features for neighbors, (iii) extract embedding trust features for neighbors, (iv) create user-feature matrix, (v) calculate user’s priority, (vi) calculate item’s priority and finally, (vii) recommend top-N items. We implement the proposed method with three datasets for recommendations. We compare our results with some advanced ranking methods and observe that the accuracy of our method for all users and cold-start users improves. Our method can also create more items for cold-start users in the list of recommended items.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于优先级的前N推荐排序中的用户结构信息
推荐系统是一套数据恢复工具和技术,用于根据用户的选择向用户推荐项目。为了提高推荐的准确性,在过去十年中,除了用户项目排名数据之外,还使用额外的信息(例如,社交信息、信任、项目标签等)一直是一个活跃的研究领域。在本文中,我们提出了一种推荐前N个项目的新方法,该方法利用社交网络中用户之间的结构信息和信任,提取用户之间的隐含联系,并在项目推荐过程中使用。所提出的方法有七个主要步骤:(1)提取邻居喜欢的项目,(ii)为邻居构建项目特征,(iii)提取邻居的嵌入信任特征,(iv)创建用户特征矩阵,(v)计算用户的优先级,(vi)计算项目的优先级,最后,(vii)推荐前N个项目。我们用三个用于推荐的数据集来实现所提出的方法。我们将我们的结果与一些先进的排名方法进行了比较,并观察到我们的方法对所有用户和冷启动用户的准确性有所提高。我们的方法还可以在推荐项目列表中为冷启动用户创建更多项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-linear machine learning with sample perturbation augments leukemia relapse prognostics from single-cell proteomics measurements ARBP: antibiotic-resistant bacteria propagation bio-inspired algorithm and its performance on benchmark functions Detection and classification of diabetic retinopathy based on ensemble learning Office real estate price index forecasts through Gaussian process regressions for ten major Chinese cities Systematic micro-breaks affect concentration during cognitive comparison tasks: quantitative and qualitative measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1