Ranking method of the generalized intuitionistic fuzzy numbers founded on possibility measures and its application to MADM problem

Totan Garai
{"title":"Ranking method of the generalized intuitionistic fuzzy numbers founded on possibility measures and its application to MADM problem","authors":"Totan Garai","doi":"10.1007/s43674-023-00061-3","DOIUrl":null,"url":null,"abstract":"<div><p>In the real number set, generalized intuitionistic fuzzy numbers (GIFNs) are an impressive number of fuzzy sets (FSs). GIFNs are very proficient in managing the decision-making problem data. Our aim of this paper is to develop a new ranking method for solving a multi-attribute decision-making (MADM) problem with GIFN data. Here, we have defined the possibility mean and standard deviation of GIFNs. Then, we have formulated the magnitude of membership and non-membership function of GIFNs. In the proposed MADM problem, the attribute values are expressed as GIFNs, which is a very workable environment for decision-making problems. Finally, a numerical example is analyzed to demonstrate the flexibility, applicability and universality of the proposed ranking method and MADM problem.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43674-023-00061-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-023-00061-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the real number set, generalized intuitionistic fuzzy numbers (GIFNs) are an impressive number of fuzzy sets (FSs). GIFNs are very proficient in managing the decision-making problem data. Our aim of this paper is to develop a new ranking method for solving a multi-attribute decision-making (MADM) problem with GIFN data. Here, we have defined the possibility mean and standard deviation of GIFNs. Then, we have formulated the magnitude of membership and non-membership function of GIFNs. In the proposed MADM problem, the attribute values are expressed as GIFNs, which is a very workable environment for decision-making problems. Finally, a numerical example is analyzed to demonstrate the flexibility, applicability and universality of the proposed ranking method and MADM problem.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可能性测度的广义直觉模糊数排序方法及其在MADM问题中的应用
在实数集中,广义直觉模糊数是一个数量可观的模糊集。GIFN非常擅长管理决策问题数据。本文的目的是开发一种新的排序方法来解决具有GIFN数据的多属性决策(MADM)问题。在这里,我们定义了GIFNs的可能性均值和标准差。然后,我们制定了GIFN的成员和非成员函数的大小。在所提出的MADM问题中,属性值被表示为GIFNs,这是一个非常可行的决策环境。最后,通过算例分析,验证了所提出的排序方法和MADM问题的灵活性、适用性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-linear machine learning with sample perturbation augments leukemia relapse prognostics from single-cell proteomics measurements ARBP: antibiotic-resistant bacteria propagation bio-inspired algorithm and its performance on benchmark functions Detection and classification of diabetic retinopathy based on ensemble learning Office real estate price index forecasts through Gaussian process regressions for ten major Chinese cities Systematic micro-breaks affect concentration during cognitive comparison tasks: quantitative and qualitative measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1