Optimal quantum state tomography with noisy gates

IF 5.8 2区 物理与天体物理 Q1 OPTICS EPJ Quantum Technology Pub Date : 2023-06-28 DOI:10.1140/epjqt/s40507-023-00181-2
Violeta N. Ivanova-Rohling, Niklas Rohling, Guido Burkard
{"title":"Optimal quantum state tomography with noisy gates","authors":"Violeta N. Ivanova-Rohling,&nbsp;Niklas Rohling,&nbsp;Guido Burkard","doi":"10.1140/epjqt/s40507-023-00181-2","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum state tomography (QST) represents an essential tool for the characterization, verification, and validation (QCVV) of quantum processors. Only for a few idealized scenarios, there are analytic results for the optimal measurement set for QST. E.g., in a setting of non-degenerate measurements, an optimal minimal set of measurement operators for QST has eigenbases which are mutually unbiased. However, in other set-ups, dependent on the rank of the projection operators and the size of the quantum system, the optimal choice of measurements for efficient QST needs to be numerically approximated. We have generalized this problem by introducing the framework of <i>customized efficient QST</i>. Here we extend customized QST and look for the optimal measurement set for QST in the case where some of the quantum gates applied in the measurement process are noisy. To achieve this, we use two distinct noise models: first, the depolarizing channel, and second, over- and under-rotation in single-qubit and to two-qubit gates (for further information, please see Methods). We demonstrate the benefit of using entangling gates for the efficient QST measurement schemes for two qubits at realistic noise levels, by comparing the fidelity of reconstruction of our optimized QST measurement set to the state-of-the-art scheme using only product bases.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"10 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00181-2","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-023-00181-2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2

Abstract

Quantum state tomography (QST) represents an essential tool for the characterization, verification, and validation (QCVV) of quantum processors. Only for a few idealized scenarios, there are analytic results for the optimal measurement set for QST. E.g., in a setting of non-degenerate measurements, an optimal minimal set of measurement operators for QST has eigenbases which are mutually unbiased. However, in other set-ups, dependent on the rank of the projection operators and the size of the quantum system, the optimal choice of measurements for efficient QST needs to be numerically approximated. We have generalized this problem by introducing the framework of customized efficient QST. Here we extend customized QST and look for the optimal measurement set for QST in the case where some of the quantum gates applied in the measurement process are noisy. To achieve this, we use two distinct noise models: first, the depolarizing channel, and second, over- and under-rotation in single-qubit and to two-qubit gates (for further information, please see Methods). We demonstrate the benefit of using entangling gates for the efficient QST measurement schemes for two qubits at realistic noise levels, by comparing the fidelity of reconstruction of our optimized QST measurement set to the state-of-the-art scheme using only product bases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带噪声门的最佳量子态层析成像
量子态层析成像(QST)是量子处理器表征、验证和验证(QCVV)的重要工具。只有在一些理想化的情况下,才有QST的最佳测量集的分析结果。例如,在一组非退化测量中,QST的测量算子的最优最小集具有互无偏的特征基。然而,在其他设置中,依赖于投影算子的秩和量子系统的大小,有效QST测量的最佳选择需要数值近似。通过引入定制化高效QST框架,对这一问题进行了推广。在这里,我们扩展了定制的QST,并在测量过程中应用的一些量子门有噪声的情况下寻找QST的最佳测量集。为了实现这一目标,我们使用了两种不同的噪声模型:第一,去极化通道,第二,单量子比特和双量子比特门的过旋转和欠旋转(有关进一步信息,请参阅方法)。通过比较我们优化的QST测量集的重建保真度与仅使用产品基的最先进方案,我们证明了在实际噪声水平下使用纠缠门对两个量子位的有效QST测量方案的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
期刊最新文献
Numerical model of N-level cascade systems for atomic Radio Frequency sensing applications Electromagnetic side-channel attack risk assessment on a practical quantum-key-distribution receiver based on multi-class classification KANQAS: Kolmogorov-Arnold Network for Quantum Architecture Search Generation of phonon quantum states and quantum correlations among single photon emitters in hexagonal boron nitride Teaching quantum information science to secondary school students with photon polarization and which-path encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1