Minho Jin, Haeyeon Lee, Changik Im, Hyun-Jae Na, Jae Hak Lee, Won Hyung Lee, Junghyup Han, Eungkyu Lee, Junwoo Park, Youn Sang Kim
{"title":"Interfacial Ion-Trapping Electrolyte-Gated Transistors for High-Fidelity Neuromorphic Computing","authors":"Minho Jin, Haeyeon Lee, Changik Im, Hyun-Jae Na, Jae Hak Lee, Won Hyung Lee, Junghyup Han, Eungkyu Lee, Junwoo Park, Youn Sang Kim","doi":"10.1002/adfm.202201048","DOIUrl":null,"url":null,"abstract":"<p>Li<sup>+</sup> electrolyte-gated transistors (EGTs) have received much attention as artificial synapses for neuromorphic computing. EGTs, however, have been still challenging to achieve long-term synaptic plasticity, which should be linearly and symmetrically controlled with the magnitude of electrical potential at the gate electrode. Herein, a fluoroalkylsilane (FAS) self-assembled monolayer (SAM) is introduced as a channel-electrolyte interlayer with the function of sequential ion-trapping in Li<sup>+</sup> EGTs. It is demonstrated that the retention of Li<sup>+</sup> ions can be enhanced, resulting in stable non-volatile channel conductance update with high fidelity, linearity, and symmetry in EGTs treated with FAS with 5 fluoroalkyl chains. Through investigating electrical analysis and chemical analysis, it is verified that fluoroalkyl chains enable the sequential ion-trapping at the channel-electrolyte interface by coulombic attraction between Li<sup>+</sup> ions and fluorocarbons. Simulations of artificial neural networks using 20 × 20 digits show FAS-treated EGTs are suitable as artificial synapses with an accuracy of 89.71% by identical gate pulses and 91.97% by non-identical gate pulses. A methodological approach is newly introduced for developing synaptic devices based on EGTs for neuromorphic computing with high fidelity.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202201048","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
Li+ electrolyte-gated transistors (EGTs) have received much attention as artificial synapses for neuromorphic computing. EGTs, however, have been still challenging to achieve long-term synaptic plasticity, which should be linearly and symmetrically controlled with the magnitude of electrical potential at the gate electrode. Herein, a fluoroalkylsilane (FAS) self-assembled monolayer (SAM) is introduced as a channel-electrolyte interlayer with the function of sequential ion-trapping in Li+ EGTs. It is demonstrated that the retention of Li+ ions can be enhanced, resulting in stable non-volatile channel conductance update with high fidelity, linearity, and symmetry in EGTs treated with FAS with 5 fluoroalkyl chains. Through investigating electrical analysis and chemical analysis, it is verified that fluoroalkyl chains enable the sequential ion-trapping at the channel-electrolyte interface by coulombic attraction between Li+ ions and fluorocarbons. Simulations of artificial neural networks using 20 × 20 digits show FAS-treated EGTs are suitable as artificial synapses with an accuracy of 89.71% by identical gate pulses and 91.97% by non-identical gate pulses. A methodological approach is newly introduced for developing synaptic devices based on EGTs for neuromorphic computing with high fidelity.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.