Fabiano de Castro Liberato Costa, Antonio Martinez, R. C. Klann
{"title":"Clusterização de precedentes de IRPJ no CARF","authors":"Fabiano de Castro Liberato Costa, Antonio Martinez, R. C. Klann","doi":"10.11606/issn.1982-6486.rco.2023.197181","DOIUrl":null,"url":null,"abstract":"O objetivo deste estudo foi agrupar acórdãos do Conselho Administrativo de Recursos Fiscais (CARF) relacionados ao Imposto de Renda Pessoa Jurídica (IRPJ), prolatados entre 2016 e 2020, empregando técnicas de aprendizado de máquina (ML) para a clusterização de documentos textuais. A análise resultou em 13 clusters exclusivos, um achado inédito na literatura contábil tributária no Brasil. Essa identificação é relevante para o CARF, contribuintes, administração tributária e profissionais contábeis e tributaristas envolvidos em questões contábeis e tributárias relacionadas ao IRPJ. Os algoritmos de ML utilizados mostraram-se eficientes na resolução de problemas complexos de processamento de linguagem natural (PLN), como criar representações vetoriais de termos e identificar temáticas em dados não estruturados, fornecendo contribuições valiosas para o entendimento de matérias controversas no IRPJ à luz da jurisprudência administrativa. A clusterização de precedentes se traduz em maior acessibilidade e análise de padrões nos julgamentos, facilitando a tomada de decisões na contabilidade tributária.","PeriodicalId":33933,"journal":{"name":"Revista de Contabilidade e Organizacoes","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Contabilidade e Organizacoes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11606/issn.1982-6486.rco.2023.197181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0
Abstract
O objetivo deste estudo foi agrupar acórdãos do Conselho Administrativo de Recursos Fiscais (CARF) relacionados ao Imposto de Renda Pessoa Jurídica (IRPJ), prolatados entre 2016 e 2020, empregando técnicas de aprendizado de máquina (ML) para a clusterização de documentos textuais. A análise resultou em 13 clusters exclusivos, um achado inédito na literatura contábil tributária no Brasil. Essa identificação é relevante para o CARF, contribuintes, administração tributária e profissionais contábeis e tributaristas envolvidos em questões contábeis e tributárias relacionadas ao IRPJ. Os algoritmos de ML utilizados mostraram-se eficientes na resolução de problemas complexos de processamento de linguagem natural (PLN), como criar representações vetoriais de termos e identificar temáticas em dados não estruturados, fornecendo contribuições valiosas para o entendimento de matérias controversas no IRPJ à luz da jurisprudência administrativa. A clusterização de precedentes se traduz em maior acessibilidade e análise de padrões nos julgamentos, facilitando a tomada de decisões na contabilidade tributária.