{"title":"Application of black-box models based on artificial intelligence for the prediction of chlorine and TTHMs in the trunk network of Bogotá, Colombia","authors":"Laura Enríquez, Laura González, J. Saldarriaga","doi":"10.2166/hydro.2023.028","DOIUrl":null,"url":null,"abstract":"\n \n The chlorine and total trihalomethane (TTHM) concentrations are sparsely measured in the trunk network of Bogotá, Colombia, which leads to a high uncertainty level at an operational level. For this reason, this research assessed the prediction accuracy for chlorine and TTHM concentrations of two black-box models based on the following artificial intelligence techniques: artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS) as a modelling alternative. The simulation results of a hydraulic and water quality analysis of the network in EPANET and its multi-species extension EPANET-MSX were used for training the black-box models. Subsequently, the Threat Ensemble Vulnerability Assessment-Sensor Placement Optimization Tool (TEVA-SPOT) and Evolutionary Polynomial Regression-Multi-Objective Genetic Algorithm (EPR-MOGA-XL) were jointly applied to select the most representative input variables and locations for predicting water quality at other points of the network. ANNs and ANFIS were optimized with a multi-objective approach to reach a compromise between training performance and generalization capacity. The ANFIS models had a higher mean Training and Test Nash–Sutcliffe Index (NSI) in contrast with ANNs. In general, the models had a satisfactory mean prediction performance. However, some of them did not achieve suitable Test NSI values, and the prediction accuracy for different operational statuses was limited.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2023.028","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The chlorine and total trihalomethane (TTHM) concentrations are sparsely measured in the trunk network of Bogotá, Colombia, which leads to a high uncertainty level at an operational level. For this reason, this research assessed the prediction accuracy for chlorine and TTHM concentrations of two black-box models based on the following artificial intelligence techniques: artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS) as a modelling alternative. The simulation results of a hydraulic and water quality analysis of the network in EPANET and its multi-species extension EPANET-MSX were used for training the black-box models. Subsequently, the Threat Ensemble Vulnerability Assessment-Sensor Placement Optimization Tool (TEVA-SPOT) and Evolutionary Polynomial Regression-Multi-Objective Genetic Algorithm (EPR-MOGA-XL) were jointly applied to select the most representative input variables and locations for predicting water quality at other points of the network. ANNs and ANFIS were optimized with a multi-objective approach to reach a compromise between training performance and generalization capacity. The ANFIS models had a higher mean Training and Test Nash–Sutcliffe Index (NSI) in contrast with ANNs. In general, the models had a satisfactory mean prediction performance. However, some of them did not achieve suitable Test NSI values, and the prediction accuracy for different operational statuses was limited.
期刊介绍:
Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.