Design and Optimization of Infinite Impulse Response Full-Band Digital Differentiator Using Evolutionary and Swarm Intelligence Algorithms

IF 0.7 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Jordan Journal of Electrical Engineering Pub Date : 2022-01-01 DOI:10.5455/jjee.204-1642708977
J. Ababneh, M. Khodier
{"title":"Design and Optimization of Infinite Impulse Response Full-Band Digital Differentiator Using Evolutionary and Swarm Intelligence Algorithms","authors":"J. Ababneh, M. Khodier","doi":"10.5455/jjee.204-1642708977","DOIUrl":null,"url":null,"abstract":"In this paper, the design and optimization of infinite impulse response full-band digital differentiator (DD) using evolutionary and swarm intelligence algorithms is investigated. Different objective functions based on the absolute error, the squared absolute error and the min-max optimality criterion are investigated. The optimal DD parameters that result in the best minimum value of the investigated objective functions are obtained using differential evolution, particle swarm optimization, genetic algorithm and cuckoo search optimization methods. These algorithms are used due to their simplicity, efficiency and robustness in solving general multidimensional optimization problems. The investigation outcomes show that minimizing the absolute error gives the most flat magnitude response, and minimizing the squared absolute error gives almost the lowest mean error of the designed DD. In addition, a new objective function is proposed to improve the linearity of the phase response of the designed infinite impulse response full-band DD. It is found that the design of the DD using the differential evolution outperforms or at least is comparable to similar designs reported in the literature using other optimization methods.","PeriodicalId":29729,"journal":{"name":"Jordan Journal of Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/jjee.204-1642708977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the design and optimization of infinite impulse response full-band digital differentiator (DD) using evolutionary and swarm intelligence algorithms is investigated. Different objective functions based on the absolute error, the squared absolute error and the min-max optimality criterion are investigated. The optimal DD parameters that result in the best minimum value of the investigated objective functions are obtained using differential evolution, particle swarm optimization, genetic algorithm and cuckoo search optimization methods. These algorithms are used due to their simplicity, efficiency and robustness in solving general multidimensional optimization problems. The investigation outcomes show that minimizing the absolute error gives the most flat magnitude response, and minimizing the squared absolute error gives almost the lowest mean error of the designed DD. In addition, a new objective function is proposed to improve the linearity of the phase response of the designed infinite impulse response full-band DD. It is found that the design of the DD using the differential evolution outperforms or at least is comparable to similar designs reported in the literature using other optimization methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于进化和群体智能算法的无限脉冲响应全带数字微分器设计与优化
研究了基于进化算法和群体智能算法的无限脉冲响应全带数字微分器的设计与优化问题。研究了基于绝对误差、绝对误差平方和最小-最大最优准则的不同目标函数。采用差分进化、粒子群优化、遗传算法和布谷鸟搜索优化等方法,得到了使所研究目标函数最小值最优的DD参数。这些算法由于其简单、高效和鲁棒性而被广泛用于解决一般的多维优化问题。研究结果表明,最小的绝对误差可获得最平坦的震级响应,最小的绝对误差平方可获得几乎最小的设计DD平均误差。提出了一种新的目标函数来提高所设计的无限脉冲响应全频带DD的相位响应线性度。研究发现,采用差分进化方法设计的DD优于或至少与文献中使用其他优化方法的类似设计相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.20
自引率
14.30%
发文量
0
期刊最新文献
Monitoring System for a Hybrid Photovoltaic-Diesel Power System: Web-Based SCADA Approach A Method of Colour-Histogram Matching for Nigerian Paper Currency Notes Classification. Energy-Efficient Cache Partitioning Using Machine Learning for Embedded Systems Effect of Fuel Cells on Voltage Sag Mitigation in Power Grids Using Advanced Equilibrium Optimizer and Particle Swarm Optimization Power Conditioner Design and Control for a Grid-Connected Proton Exchange Membrane Fuel Cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1