A Method of Colour-Histogram Matching for Nigerian Paper Currency Notes Classification.

IF 0.7 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Jordan Journal of Electrical Engineering Pub Date : 2023-01-01 DOI:10.5455/jjee.204-1660326012
I. Omeiza, O. Ogunbiyi, O. Ogundepo, Abdulrahaman Okino Otuoze, D. Egbune, K. Osunsanya
{"title":"A Method of Colour-Histogram Matching for Nigerian Paper Currency Notes Classification.","authors":"I. Omeiza, O. Ogunbiyi, O. Ogundepo, Abdulrahaman Okino Otuoze, D. Egbune, K. Osunsanya","doi":"10.5455/jjee.204-1660326012","DOIUrl":null,"url":null,"abstract":"In this paper a new algorithm for classification of three Nigerian paper currency notes, namely 200, 500, and 1000 Naira (N) denominations is presented. The work examines the effectiveness of using only colour histograms to differentiate between the classes or denominations of the three Nigerian paper currency notes. The bin-heights of the histograms of the HSI component images for the paper currencies are used as features while a rule-based classifier designed to take advantage of the changes or variations in the histogram patterns is used to classify the paper currencies into the right denomination class. The algorithm involves the utilization of a simple and effective comparison strategy as opposed to the existing, too-rigid metrics for histogram-comparison used by other authors for color indexing in content-based image retrieval systems. Over a testing data-set of 300 samples, the algorithm achieved an average classification accuracy of 98.66%, and classification accuracies of 100%, 99% and 97% for the N=200, N=500 and N=1000 denominations, respectively. The proposed algorithm does not require extensive preprocessing of the paper-currency images and as such is fast in implementation.","PeriodicalId":29729,"journal":{"name":"Jordan Journal of Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/jjee.204-1660326012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper a new algorithm for classification of three Nigerian paper currency notes, namely 200, 500, and 1000 Naira (N) denominations is presented. The work examines the effectiveness of using only colour histograms to differentiate between the classes or denominations of the three Nigerian paper currency notes. The bin-heights of the histograms of the HSI component images for the paper currencies are used as features while a rule-based classifier designed to take advantage of the changes or variations in the histogram patterns is used to classify the paper currencies into the right denomination class. The algorithm involves the utilization of a simple and effective comparison strategy as opposed to the existing, too-rigid metrics for histogram-comparison used by other authors for color indexing in content-based image retrieval systems. Over a testing data-set of 300 samples, the algorithm achieved an average classification accuracy of 98.66%, and classification accuracies of 100%, 99% and 97% for the N=200, N=500 and N=1000 denominations, respectively. The proposed algorithm does not require extensive preprocessing of the paper-currency images and as such is fast in implementation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
尼日利亚纸币分类的颜色直方图匹配方法。
本文提出了一种新的尼日利亚纸币分类算法,即200、500和1000奈拉(N)面额。这项工作考察了仅使用颜色直方图来区分三种尼日利亚纸币的类别或面额的有效性。纸币的恒生指数成分图像的直方图的桶高被用作特征,而基于规则的分类器被设计用来利用直方图模式的变化或变化来将纸币分类到正确的面额类别。与其他作者在基于内容的图像检索系统中用于颜色索引的直方图比较中使用的现有的过于严格的度量相反,该算法涉及到一种简单有效的比较策略的利用。在300个样本的测试数据集上,该算法的平均分类准确率为98.66%,对于N=200、N=500和N=1000面额的分类准确率分别为100%、99%和97%。该算法不需要对纸币图像进行大量预处理,实现速度快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.20
自引率
14.30%
发文量
0
期刊最新文献
Monitoring System for a Hybrid Photovoltaic-Diesel Power System: Web-Based SCADA Approach A Method of Colour-Histogram Matching for Nigerian Paper Currency Notes Classification. Energy-Efficient Cache Partitioning Using Machine Learning for Embedded Systems Effect of Fuel Cells on Voltage Sag Mitigation in Power Grids Using Advanced Equilibrium Optimizer and Particle Swarm Optimization Power Conditioner Design and Control for a Grid-Connected Proton Exchange Membrane Fuel Cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1