Energy-Efficient Cache Partitioning Using Machine Learning for Embedded Systems

IF 0.7 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Jordan Journal of Electrical Engineering Pub Date : 2023-01-01 DOI:10.5455/jjee.204-1669909560
Samar Nour, S. Habashy, Sameh A. Salem
{"title":"Energy-Efficient Cache Partitioning Using Machine Learning for Embedded Systems","authors":"Samar Nour, S. Habashy, Sameh A. Salem","doi":"10.5455/jjee.204-1669909560","DOIUrl":null,"url":null,"abstract":"Nowadays, embedded device applications have become partially correlated and can share platform resources. Cross-execution and sharing resources can cause memory access conflicts, especially in the Last Level Cache (LLC). LLC is a promising candidate for improving system performance on multicore embedded systems. It leads to a reduction in the number of high-latency main memory accesses. Currently, commercial devices can use cache partitioning. The software could better utilize the LLC and conserve energy by caching. This paper proposes a new energy-optimization model for embedded multicore systems based on a reconfigurable artificial neural network LLC architecture. The proposed model uses a machine-learning approach to express the reconfiguration of LLC, and can predict each task’s next interval LLC partitioning factor at runtime. The obtained experimental results reveal that the proposed model - compared to other algorithms - improves energy consumption by 28%, and gives 33% reduction in the LLC miss rate.","PeriodicalId":29729,"journal":{"name":"Jordan Journal of Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/jjee.204-1669909560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays, embedded device applications have become partially correlated and can share platform resources. Cross-execution and sharing resources can cause memory access conflicts, especially in the Last Level Cache (LLC). LLC is a promising candidate for improving system performance on multicore embedded systems. It leads to a reduction in the number of high-latency main memory accesses. Currently, commercial devices can use cache partitioning. The software could better utilize the LLC and conserve energy by caching. This paper proposes a new energy-optimization model for embedded multicore systems based on a reconfigurable artificial neural network LLC architecture. The proposed model uses a machine-learning approach to express the reconfiguration of LLC, and can predict each task’s next interval LLC partitioning factor at runtime. The obtained experimental results reveal that the proposed model - compared to other algorithms - improves energy consumption by 28%, and gives 33% reduction in the LLC miss rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的嵌入式系统高效缓存分区
如今,嵌入式设备应用已经实现了部分关联,可以共享平台资源。交叉执行和共享资源可能导致内存访问冲突,特别是在最后一级缓存(LLC)中。在多核嵌入式系统中,LLC是一种很有前途的提高系统性能的方法。它可以减少高延迟主内存访问的数量。目前,商用设备可以使用cache分区。该软件可以更好地利用LLC,并通过缓存来节约能源。提出了一种基于可重构人工神经网络LLC结构的嵌入式多核系统能量优化模型。该模型使用机器学习方法来表达LLC的重构,并能在运行时预测每个任务的下一个间隔LLC划分因子。实验结果表明,与其他算法相比,该模型的能耗降低了28%,LLC脱靶率降低了33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.20
自引率
14.30%
发文量
0
期刊最新文献
Monitoring System for a Hybrid Photovoltaic-Diesel Power System: Web-Based SCADA Approach A Method of Colour-Histogram Matching for Nigerian Paper Currency Notes Classification. Energy-Efficient Cache Partitioning Using Machine Learning for Embedded Systems Effect of Fuel Cells on Voltage Sag Mitigation in Power Grids Using Advanced Equilibrium Optimizer and Particle Swarm Optimization Power Conditioner Design and Control for a Grid-Connected Proton Exchange Membrane Fuel Cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1