Optimal Design of Fuzzy Controller for Photovoltaic Maximum Power Tracking Using Particles Swarm Optimization Algorithm

IF 0.7 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Jordan Journal of Electrical Engineering Pub Date : 2023-01-01 DOI:10.5455/jjee.204-1667043172
P.D. Barjoei, Mehrdad Kouhpaei
{"title":"Optimal Design of Fuzzy Controller for Photovoltaic Maximum Power Tracking Using Particles Swarm Optimization Algorithm","authors":"P.D. Barjoei, Mehrdad Kouhpaei","doi":"10.5455/jjee.204-1667043172","DOIUrl":null,"url":null,"abstract":"Solar panels have non-linear current-voltage characteristics and a specified maximum power point, which depends on environmental factors like the solar radiation and ambient temperature. The voltage-power curve of the photovoltaic system has multiple peaks under different atmospheric conditions that reduce the efficiency of the maximum power tracking techniques. This paper proposes an optimal design of a fuzzy controller using particle swarm optimization algorithm to track the maximum power point of a photovoltaic system operating under different conditions to improve its performance. The proposed system optimizes the particle swarm to produce an optimal working coefficient, which varies with photovoltaic parameters to extract maximum power. Results of simulations – performed using the MATLAB software - show the advantages of the proposed method, namely the ability to track the maximum power point in a short time and maintain the output waveform despite the relatively high variations in environmental conditions.","PeriodicalId":29729,"journal":{"name":"Jordan Journal of Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/jjee.204-1667043172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Solar panels have non-linear current-voltage characteristics and a specified maximum power point, which depends on environmental factors like the solar radiation and ambient temperature. The voltage-power curve of the photovoltaic system has multiple peaks under different atmospheric conditions that reduce the efficiency of the maximum power tracking techniques. This paper proposes an optimal design of a fuzzy controller using particle swarm optimization algorithm to track the maximum power point of a photovoltaic system operating under different conditions to improve its performance. The proposed system optimizes the particle swarm to produce an optimal working coefficient, which varies with photovoltaic parameters to extract maximum power. Results of simulations – performed using the MATLAB software - show the advantages of the proposed method, namely the ability to track the maximum power point in a short time and maintain the output waveform despite the relatively high variations in environmental conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群算法的光伏最大功率跟踪模糊控制器优化设计
太阳能电池板具有非线性的电流电压特性和指定的最大功率点,这取决于太阳辐射和环境温度等环境因素。在不同大气条件下,光伏系统的电压-功率曲线存在多个峰值,降低了最大功率跟踪技术的效率。本文提出了一种基于粒子群优化算法的模糊控制器优化设计方法,用于跟踪光伏系统在不同工况下的最大功率点,以提高系统的性能。该系统对粒子群进行优化,产生一个最优的工作系数,该系数随光伏参数的变化而变化,以获取最大功率。使用MATLAB软件进行的仿真结果显示了所提出方法的优点,即能够在短时间内跟踪最大功率点,并在环境条件变化相对较大的情况下保持输出波形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.20
自引率
14.30%
发文量
0
期刊最新文献
Monitoring System for a Hybrid Photovoltaic-Diesel Power System: Web-Based SCADA Approach A Method of Colour-Histogram Matching for Nigerian Paper Currency Notes Classification. Energy-Efficient Cache Partitioning Using Machine Learning for Embedded Systems Effect of Fuel Cells on Voltage Sag Mitigation in Power Grids Using Advanced Equilibrium Optimizer and Particle Swarm Optimization Power Conditioner Design and Control for a Grid-Connected Proton Exchange Membrane Fuel Cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1