Sustainable bioleaching of lithium-ion batteries for critical metal recovery: Process optimization through design of experiments and thermodynamic modeling
Majid Alipanah , Hongyue Jin , Qiang Zhou , Caitlin Barboza , David Gazzo , Vicki Thompson , Yoshiko Fujita , Jiangping Liu , Andre Anderko , David Reed
{"title":"Sustainable bioleaching of lithium-ion batteries for critical metal recovery: Process optimization through design of experiments and thermodynamic modeling","authors":"Majid Alipanah , Hongyue Jin , Qiang Zhou , Caitlin Barboza , David Gazzo , Vicki Thompson , Yoshiko Fujita , Jiangping Liu , Andre Anderko , David Reed","doi":"10.1016/j.resconrec.2023.107293","DOIUrl":null,"url":null,"abstract":"<div><p>Recycling spent lithium-ion batteries (LIBs) could alleviate supply risks for critical metals and be less harmful to the environment compared to new production of metals from mining. Developing a cost-effective LIB bioleaching process could be a promising alternative to traditional energy-intensive recycling technologies. This study aimed to optimize bioleaching conditions for maximum economic competitiveness through design of experiments using iterative response surface methodology (RSM), assisted by thermodynamic modeling. The optimal condition was identified as 2.5% pulp density in 75 mM gluconic acid biolixiviant at 55°C for 30 h which could recover 57%–84% of nickel, 71%–86% of cobalt, and 100% of lithium and manganese, yielding a 17%–26% net profit margin. The recommended pulp density and acid concentrations, together with the observed metal solubilization, were supported by thermodynamic modeling predictions. Our study demonstrated that combining RSM with thermodynamic simulations could be a powerful tool for optimizing bioleaching conditions.</p></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":"199 ","pages":"Article 107293"},"PeriodicalIF":11.2000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344923004275","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recycling spent lithium-ion batteries (LIBs) could alleviate supply risks for critical metals and be less harmful to the environment compared to new production of metals from mining. Developing a cost-effective LIB bioleaching process could be a promising alternative to traditional energy-intensive recycling technologies. This study aimed to optimize bioleaching conditions for maximum economic competitiveness through design of experiments using iterative response surface methodology (RSM), assisted by thermodynamic modeling. The optimal condition was identified as 2.5% pulp density in 75 mM gluconic acid biolixiviant at 55°C for 30 h which could recover 57%–84% of nickel, 71%–86% of cobalt, and 100% of lithium and manganese, yielding a 17%–26% net profit margin. The recommended pulp density and acid concentrations, together with the observed metal solubilization, were supported by thermodynamic modeling predictions. Our study demonstrated that combining RSM with thermodynamic simulations could be a powerful tool for optimizing bioleaching conditions.
期刊介绍:
The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns.
Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.