Development of biochar electrode materials for capacitive deionization: preparation, performance, regeneration and other challenges

IF 5.7 3区 材料科学 Q2 Materials Science New Carbon Materials Pub Date : 2023-10-01 DOI:10.1016/S1872-5805(23)60779-6
Zhi-Hong Zeng, Li-Li Yan, Guang-Hui Li, Pin-Hua Rao, Yi-Ran Sun, Zhen-Yi Zhao
{"title":"Development of biochar electrode materials for capacitive deionization: preparation, performance, regeneration and other challenges","authors":"Zhi-Hong Zeng,&nbsp;Li-Li Yan,&nbsp;Guang-Hui Li,&nbsp;Pin-Hua Rao,&nbsp;Yi-Ran Sun,&nbsp;Zhen-Yi Zhao","doi":"10.1016/S1872-5805(23)60779-6","DOIUrl":null,"url":null,"abstract":"<div><p>Capacitive deionization (CDI) is a potential cost-efficient desalination technology. Its performance is intrinsically limited by the structure and properties of the electrode materials. Biomass materials have become a research hotspot for CDI electrode materials because of their abundance, low cost, and unique structure. The preparation, desalination performance, and regeneration status of biochar electrodes are summarized and clarified. Their preparation and use in CDI in recent years are presented and compared, and the effects of biochar electrode materials and CDI operating parameters on the desalination performance are emphasized. It is found that the salt adsorption capacity is positively correlated with the percent mesoporous material they contain. The selective adsorption of ions mainly depends on ion properties like ionic radius and charge as well as voltage, charging time and feed water characteristics. The current status and methods of electrode regeneration are discussed and future developments are suggested.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"38 5","pages":"Pages 837-860"},"PeriodicalIF":5.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580523607796","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Capacitive deionization (CDI) is a potential cost-efficient desalination technology. Its performance is intrinsically limited by the structure and properties of the electrode materials. Biomass materials have become a research hotspot for CDI electrode materials because of their abundance, low cost, and unique structure. The preparation, desalination performance, and regeneration status of biochar electrodes are summarized and clarified. Their preparation and use in CDI in recent years are presented and compared, and the effects of biochar electrode materials and CDI operating parameters on the desalination performance are emphasized. It is found that the salt adsorption capacity is positively correlated with the percent mesoporous material they contain. The selective adsorption of ions mainly depends on ion properties like ionic radius and charge as well as voltage, charging time and feed water characteristics. The current status and methods of electrode regeneration are discussed and future developments are suggested.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物炭电容去离子电极材料的研究进展:制备、性能、再生及其他挑战
电容去离子(CDI)是一种具有潜在成本效益的海水淡化技术。其性能本质上受到电极材料的结构和性能的限制。生物质材料以其丰富、低成本和独特的结构成为CDI电极材料的研究热点。综述和阐明了生物炭电极的制备、脱盐性能和再生状况。介绍了近年来生物炭电极材料的制备及其在CDI中的应用,并对其进行了比较,强调了生物炭电极的材料和CDI操作参数对脱盐性能的影响。研究发现,盐的吸附能力与它们所含的介孔材料的百分比呈正相关。离子的选择性吸附主要取决于离子的性质,如离子半径和电荷,以及电压、充电时间和给水特性。讨论了电极再生的现状和方法,并对今后的发展提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
期刊最新文献
A review of hard carbon anodes for rechargeable sodium-ion batteries Recent advances in producing hollow carbon spheres for use in sodium−sulfur and potassium−sulfur batteries Design, progress and challenges of 3D carbon-based thermally conductive networks The application of metal–organic frameworks and their derivatives for lithium-ion capacitors A review of the carbon coating of the silicon anode in high-performance lithium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1