{"title":"Self-supervised learning advanced plant disease image classification with SimCLR","authors":"Songpol Bunyang, Natdanai Thedwichienchai, Krisna Pintong, Nuj Lael, Wuthipoom Kunaborimas, Phawit Boonrat, Thitirat Siriborvornratanakul","doi":"10.1007/s43674-023-00065-z","DOIUrl":null,"url":null,"abstract":"<div><p>Supervised learning will be a bottleneck for developing plant disease identification since it relies on learning from massive amounts of carefully labeled images, which is costly and time-consuming. On the contrary, self-supervised learning has succeeded in various image classification tasks; however, it has not been applied broadly in the plant disease analysis process. This work, therefore, studies the effectiveness of self-supervised learning using contrastive pre-training with SimCLR for plant disease image classification. We investigated unsupervised pre-training scenarios on unlabeled plant images across multiple architectures, including supervised fine-tuning on labeled samples. In addition, we explored the label efficiency of the self-supervised approach, acquired by fine-tuning the models on various fractions of labeled images. Our results demonstrated that the performance of self-supervised learning on plant disease became comparable to that of the supervised training approach.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"3 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-023-00065-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Supervised learning will be a bottleneck for developing plant disease identification since it relies on learning from massive amounts of carefully labeled images, which is costly and time-consuming. On the contrary, self-supervised learning has succeeded in various image classification tasks; however, it has not been applied broadly in the plant disease analysis process. This work, therefore, studies the effectiveness of self-supervised learning using contrastive pre-training with SimCLR for plant disease image classification. We investigated unsupervised pre-training scenarios on unlabeled plant images across multiple architectures, including supervised fine-tuning on labeled samples. In addition, we explored the label efficiency of the self-supervised approach, acquired by fine-tuning the models on various fractions of labeled images. Our results demonstrated that the performance of self-supervised learning on plant disease became comparable to that of the supervised training approach.