Unravelling the spatial properties of individual mobility patterns using longitudinal travel data

IF 2.7 Q1 GEOGRAPHY Journal of Urban Mobility Pub Date : 2022-12-01 DOI:10.1016/j.urbmob.2022.100035
Oded Cats , Francesco Ferranti
{"title":"Unravelling the spatial properties of individual mobility patterns using longitudinal travel data","authors":"Oded Cats ,&nbsp;Francesco Ferranti","doi":"10.1016/j.urbmob.2022.100035","DOIUrl":null,"url":null,"abstract":"<div><p>The analysis of longitudinal travel data enables investigating how mobility patterns vary across the population and identify the spatial properties thereof. The objective of this study is to identify the extent to which users explore different parts of the network as well as identify distinctive user groups in terms of the spatial extent of their mobility patterns. To this end, we propose two means for representing spatial mobility profiles and clustering travellers accordingly. We represent users patterns in terms of zonal visiting frequency profiles and grid-cells spatial extent heatmaps. We apply the proposed analysis to a large-scale multi-modal mobility dataset from the public transport system in Stockholm, Sweden. We unravel three clusters - Locals, Commuters and Explorers - that best describe the zonal visiting frequency and show that their composition varies considerably across users’ place of residence. We also identify 15 clusters of visiting spatial extent based on the intensity and direction in which they are oriented. A cross-analysis of the results of the two clustering methods reveals that user segmentation based on exploration patterns and spatial extent are largely independent, indicating that the two different clustering approaches provide fundamentally different insights into the underlying spatial properties of individuals’ mobility patterns. The approach proposed and demonstrated in this study could be applied for any longitudinal individual travel demand data.</p></div>","PeriodicalId":100852,"journal":{"name":"Journal of Urban Mobility","volume":"2 ","pages":"Article 100035"},"PeriodicalIF":2.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667091722000231/pdfft?md5=11e498292eb05621469f8dc80badef9a&pid=1-s2.0-S2667091722000231-main.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Urban Mobility","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667091722000231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 4

Abstract

The analysis of longitudinal travel data enables investigating how mobility patterns vary across the population and identify the spatial properties thereof. The objective of this study is to identify the extent to which users explore different parts of the network as well as identify distinctive user groups in terms of the spatial extent of their mobility patterns. To this end, we propose two means for representing spatial mobility profiles and clustering travellers accordingly. We represent users patterns in terms of zonal visiting frequency profiles and grid-cells spatial extent heatmaps. We apply the proposed analysis to a large-scale multi-modal mobility dataset from the public transport system in Stockholm, Sweden. We unravel three clusters - Locals, Commuters and Explorers - that best describe the zonal visiting frequency and show that their composition varies considerably across users’ place of residence. We also identify 15 clusters of visiting spatial extent based on the intensity and direction in which they are oriented. A cross-analysis of the results of the two clustering methods reveals that user segmentation based on exploration patterns and spatial extent are largely independent, indicating that the two different clustering approaches provide fundamentally different insights into the underlying spatial properties of individuals’ mobility patterns. The approach proposed and demonstrated in this study could be applied for any longitudinal individual travel demand data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用纵向旅行数据揭示个人流动模式的空间特性
对纵向旅行数据的分析能够调查人口的流动模式如何变化,并确定其空间特性。本研究的目的是确定用户探索网络不同部分的程度,并根据其移动模式的空间范围确定不同的用户群体。为此,我们提出了两种方法来表示空间流动性特征,并相应地对旅行者进行聚类。我们根据区域访问频率剖面和网格单元空间范围热图来表示用户模式。我们将所提出的分析应用于瑞典斯德哥尔摩公共交通系统的大规模多式联运数据集。我们分析了三个集群——本地人、通勤者和探索者——它们最能描述区域访问频率,并表明它们的组成因用户居住地而异。我们还根据访问空间范围的强度和方向确定了15个集群。对两种聚类方法结果的交叉分析表明,基于探索模式和空间范围的用户分割在很大程度上是独立的,这表明两种不同的聚类方法对个人流动模式的潜在空间特性提供了根本不同的见解。本研究中提出并证明的方法可应用于任何纵向个人旅行需求数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Contrasting Stakeholders’ Perspectives on the First Full-Year School Street Initiatives in Ontario, Canada Just around the corner: Accessibility by proximity in the 15-minute city Diminishing returns of additional active travel infrastructure: Evaluating Barcelona's decade of sustainable transportation progress Effects of different mobility concepts in new residential areas Enhancing last mile connectivity using shared mobility: A stated preference survey of business park commuters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1