Query and Animate Multi-attribute Trajectory Data

Jianqiu Xu, R. H. Güting
{"title":"Query and Animate Multi-attribute Trajectory Data","authors":"Jianqiu Xu, R. H. Güting","doi":"10.1145/3132847.3133178","DOIUrl":null,"url":null,"abstract":"The widespread use of GPS-enabled devices has led to huge amounts of trajectory data. In addition to location and time, trajectories are associated with descriptive attributes representing different aspects of real entities, called multi-attribute trajectories. This comes from the combination of several data sources and enables a range of new applications in which users can find interesting trajectories and discover potential relationships that cannot be determined solely based on GPS data. In this demo, we provide the motivation scenario and introduce a system that is developed to integrate standard trajectories (a sequence of timestamped locations) and attributes into one unified framework. The system is able to answer a range of interesting queries on multi-attribute trajectories that are not handled by standard trajectories. The system supports both standard trajectories and multi-attribute trajectories. We demonstrate how to form queries and animate multi-attribute trajectories in the system. To our knowledge, existing moving objects prototype systems do not support multi-attribute trajectories.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"11 1-2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3133178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The widespread use of GPS-enabled devices has led to huge amounts of trajectory data. In addition to location and time, trajectories are associated with descriptive attributes representing different aspects of real entities, called multi-attribute trajectories. This comes from the combination of several data sources and enables a range of new applications in which users can find interesting trajectories and discover potential relationships that cannot be determined solely based on GPS data. In this demo, we provide the motivation scenario and introduce a system that is developed to integrate standard trajectories (a sequence of timestamped locations) and attributes into one unified framework. The system is able to answer a range of interesting queries on multi-attribute trajectories that are not handled by standard trajectories. The system supports both standard trajectories and multi-attribute trajectories. We demonstrate how to form queries and animate multi-attribute trajectories in the system. To our knowledge, existing moving objects prototype systems do not support multi-attribute trajectories.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
查询和动画多属性轨迹数据
gps设备的广泛使用导致了大量的轨迹数据。除了位置和时间之外,轨迹还与代表真实实体不同方面的描述性属性相关联,称为多属性轨迹。这来自多个数据源的组合,并使一系列新的应用程序成为可能,用户可以在其中找到有趣的轨迹,并发现无法仅根据GPS数据确定的潜在关系。在这个演示中,我们提供了动机场景,并介绍了一个系统,该系统被开发用于将标准轨迹(一系列时间戳位置)和属性集成到一个统一的框架中。该系统能够回答一系列标准轨迹无法处理的多属性轨迹上的有趣查询。系统支持标准轨迹和多属性轨迹。我们演示了如何在系统中形成查询和动画化多属性轨迹。据我们所知,现有的运动对象原型系统不支持多属性轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Query and Animate Multi-attribute Trajectory Data HyPerInsight: Data Exploration Deep Inside HyPer Algorithmic Bias: Do Good Systems Make Relevant Documents More Retrievable? NeuPL: Attention-based Semantic Matching and Pair-Linking for Entity Disambiguation Health Forum Thread Recommendation Using an Interest Aware Topic Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1