Algorithmic Bias: Do Good Systems Make Relevant Documents More Retrievable?

C. Wilkie, L. Azzopardi
{"title":"Algorithmic Bias: Do Good Systems Make Relevant Documents More Retrievable?","authors":"C. Wilkie, L. Azzopardi","doi":"10.1145/3132847.3133135","DOIUrl":null,"url":null,"abstract":"Algorithmic bias presents a difficult challenge within Information Retrieval. Long has it been known that certain algorithms favour particular documents due to attributes of these documents that are not directly related to relevance. The evaluation of bias has recently been made possible through the use of retrievability, a quantifiable measure of bias. While evaluating bias is relatively novel, the evaluation of performance has been common since the dawn of the Cranfield approach and TREC. To evaluate performance, a pool of documents to be judged by human assessors is created from the collection. This pooling approach has faced accusations of bias due to the fact that the state of the art algorithms were used to create it, thus the inclusion of biases associated with these algorithms may be included in the pool. The introduction of retrievability has provided a mechanism to evaluate the bias of these pools. This work evaluates the varying degrees of bias present in the groups of relevant and non-relevant documents for topics. The differentiating power of a system is also evaluated by examining the documents from the pool that are retrieved for each topic. The analysis finds that the systems that perform better, tend to have a higher chance of retrieving a relevant document rather than a non-relevant document for a topic prior to retrieval, indicating that retrieval systems which perform better at TREC are already predisposed to agree with the judgements regardless of the query posed.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3133135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Algorithmic bias presents a difficult challenge within Information Retrieval. Long has it been known that certain algorithms favour particular documents due to attributes of these documents that are not directly related to relevance. The evaluation of bias has recently been made possible through the use of retrievability, a quantifiable measure of bias. While evaluating bias is relatively novel, the evaluation of performance has been common since the dawn of the Cranfield approach and TREC. To evaluate performance, a pool of documents to be judged by human assessors is created from the collection. This pooling approach has faced accusations of bias due to the fact that the state of the art algorithms were used to create it, thus the inclusion of biases associated with these algorithms may be included in the pool. The introduction of retrievability has provided a mechanism to evaluate the bias of these pools. This work evaluates the varying degrees of bias present in the groups of relevant and non-relevant documents for topics. The differentiating power of a system is also evaluated by examining the documents from the pool that are retrieved for each topic. The analysis finds that the systems that perform better, tend to have a higher chance of retrieving a relevant document rather than a non-relevant document for a topic prior to retrieval, indicating that retrieval systems which perform better at TREC are already predisposed to agree with the judgements regardless of the query posed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
算法偏差:好的系统能使相关文档更容易检索吗?
算法偏差是信息检索中的一个难题。人们早就知道,某些算法偏爱特定的文档,因为这些文档的属性与相关性没有直接关系。最近,通过使用可回收性(一种可量化的偏见测量方法),偏见的评估成为可能。虽然评估偏差相对较新,但自克兰菲尔德方法和TREC出现以来,绩效评估一直很常见。为了评估性能,将从该集合中创建一个由人工评估人员判断的文档池。由于使用了最先进的算法来创建这种池化方法,因此这种池化方法面临着偏见的指责,因此与这些算法相关的偏见可能被包含在池中。可检索性的引入为评估这些池的偏差提供了一种机制。这项工作评估了不同程度的偏见存在于相关和不相关的主题文件组。还可以通过检查为每个主题检索的文档池中的文档来评估系统的区分能力。分析发现,在检索之前,性能较好的系统往往有更高的机会检索与主题相关的文档,而不是非相关的文档,这表明在TREC上性能较好的检索系统已经倾向于同意判断,而不管提出的查询是什么。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Query and Animate Multi-attribute Trajectory Data HyPerInsight: Data Exploration Deep Inside HyPer Algorithmic Bias: Do Good Systems Make Relevant Documents More Retrievable? NeuPL: Attention-based Semantic Matching and Pair-Linking for Entity Disambiguation Health Forum Thread Recommendation Using an Interest Aware Topic Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1