HyPerInsight: Data Exploration Deep Inside HyPer

N. Hubig, Linnea Passing, Maximilian E. Schüle, Dimitri Vorona, A. Kemper, Thomas Neumann
{"title":"HyPerInsight: Data Exploration Deep Inside HyPer","authors":"N. Hubig, Linnea Passing, Maximilian E. Schüle, Dimitri Vorona, A. Kemper, Thomas Neumann","doi":"10.1145/3132847.3133167","DOIUrl":null,"url":null,"abstract":"Nowadays we are drowning in data of various varieties. For all these mixed types and categories of data there exist even more different analysis approaches, often done in single hand-written solutions. We propose to extend HyPer, a main memory database system to a uniform data agent platform following the one system fits all approach for solving a wide variety of data analysis problems. We achieve this by applying a flexible operator concept to a set of various important data exploration algorithms. With that, HyPer solves analytical questions using clustering, classification, association rule mining and graph mining besides standard HTAP (Hybrid Transaction and Analytical Processing) workloads on the same database state. It enables to approach the full variety and volume of HTAP extended for data exploration (HTAPx), and only needs knowledge of already introduced SQL extensions that are automatically optimized by the database's standard optimizer. In this demo we will focus on the benefits and flexibility we create by using the SQL extensions for several well-known mining workloads. In our interactive webinterface for this project named HyPerInsight we demonstrate how HyPer outperforms the best open source competitor Apache Spark in common use cases in social media, geo-data, recommender systems and several other.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3133167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Nowadays we are drowning in data of various varieties. For all these mixed types and categories of data there exist even more different analysis approaches, often done in single hand-written solutions. We propose to extend HyPer, a main memory database system to a uniform data agent platform following the one system fits all approach for solving a wide variety of data analysis problems. We achieve this by applying a flexible operator concept to a set of various important data exploration algorithms. With that, HyPer solves analytical questions using clustering, classification, association rule mining and graph mining besides standard HTAP (Hybrid Transaction and Analytical Processing) workloads on the same database state. It enables to approach the full variety and volume of HTAP extended for data exploration (HTAPx), and only needs knowledge of already introduced SQL extensions that are automatically optimized by the database's standard optimizer. In this demo we will focus on the benefits and flexibility we create by using the SQL extensions for several well-known mining workloads. In our interactive webinterface for this project named HyPerInsight we demonstrate how HyPer outperforms the best open source competitor Apache Spark in common use cases in social media, geo-data, recommender systems and several other.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HyPerInsight: HyPerInsight内部的数据探索
如今,我们被各种各样的数据淹没了。对于所有这些混合类型和类别的数据,存在更多不同的分析方法,通常在单一的手写解决方案中完成。我们建议将主存数据库系统HyPer扩展为统一的数据代理平台,遵循“一刀切”的方法来解决各种各样的数据分析问题。我们通过将灵活的算子概念应用于一系列重要的数据探索算法来实现这一点。因此,除了在相同的数据库状态下使用标准的HTAP(混合事务和分析处理)工作负载外,HyPer还使用聚类、分类、关联规则挖掘和图挖掘来解决分析问题。它可以接近为数据探索(HTAPx)扩展的所有种类和数量的HTAP,并且只需要了解已经介绍的SQL扩展,这些扩展由数据库的标准优化器自动优化。在这个演示中,我们将重点介绍通过为几个知名的挖掘工作负载使用SQL扩展所带来的好处和灵活性。在这个名为HyPerInsight的项目的交互式网络界面中,我们展示了HyPer如何在社交媒体、地理数据、推荐系统和其他一些常见用例中胜过最好的开源竞争对手Apache Spark。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Query and Animate Multi-attribute Trajectory Data HyPerInsight: Data Exploration Deep Inside HyPer Algorithmic Bias: Do Good Systems Make Relevant Documents More Retrievable? NeuPL: Attention-based Semantic Matching and Pair-Linking for Entity Disambiguation Health Forum Thread Recommendation Using an Interest Aware Topic Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1