SaFIoV: A Secure and Fast Communication in Fog-based Internet-of-Vehicles using SDN and Blockchain

Jamal Alotaibi, Lubna K. Alazzawi
{"title":"SaFIoV: A Secure and Fast Communication in Fog-based Internet-of-Vehicles using SDN and Blockchain","authors":"Jamal Alotaibi, Lubna K. Alazzawi","doi":"10.1109/MWSCAS47672.2021.9531857","DOIUrl":null,"url":null,"abstract":"The Internet of Vehicles (IoV) is a decentralized network that enables data sharing between connected vehicles and vehicular ad hoc networks (VANETs). However, since different IoV applications have varied Quality-of-Service (QoS) requirements, creating an effective solution to cope with big data in IoV is challenging. Fog computing addresses the inherent flaw of centralized data processing in cloud computing by offloading computationally-intensive tasks to closely located fog nodes. Also, with an increasing number of vehicles under the IoV architecture, new challenges and requirements are emerging such as scalability, efficient resource usage, and secure communication. In this paper, we address the problems of load-balancing and secure communication in SDN-enabled and fog-based IoV networks. Our methodology (SaFIoV) efficiently distributes tasks in the fog-to-fog and vehicles-to-fog layers using reinforcement learning (RL) methods. Moreover, powered by Blockchain technology, our method provides secure communication. The result of our experimental study shows that SaFIoV can efficiently utilize the available resources while avoiding congestion and minimizing latency in the IoV network.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"107 12","pages":"334-339"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The Internet of Vehicles (IoV) is a decentralized network that enables data sharing between connected vehicles and vehicular ad hoc networks (VANETs). However, since different IoV applications have varied Quality-of-Service (QoS) requirements, creating an effective solution to cope with big data in IoV is challenging. Fog computing addresses the inherent flaw of centralized data processing in cloud computing by offloading computationally-intensive tasks to closely located fog nodes. Also, with an increasing number of vehicles under the IoV architecture, new challenges and requirements are emerging such as scalability, efficient resource usage, and secure communication. In this paper, we address the problems of load-balancing and secure communication in SDN-enabled and fog-based IoV networks. Our methodology (SaFIoV) efficiently distributes tasks in the fog-to-fog and vehicles-to-fog layers using reinforcement learning (RL) methods. Moreover, powered by Blockchain technology, our method provides secure communication. The result of our experimental study shows that SaFIoV can efficiently utilize the available resources while avoiding congestion and minimizing latency in the IoV network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SaFIoV:基于SDN和区块链的基于雾的车联网安全快速通信
车联网(IoV)是一个分散的网络,可以实现联网车辆和车辆自组织网络(vanet)之间的数据共享。然而,由于不同的车联网应用具有不同的服务质量(QoS)要求,因此创建一个有效的解决方案来应对车联网中的大数据是具有挑战性的。雾计算通过将计算密集型任务卸载到位置较近的雾节点,解决了云计算集中数据处理的固有缺陷。此外,随着越来越多的车辆采用车联网架构,新的挑战和要求也不断出现,如可扩展性、高效资源利用和安全通信。在本文中,我们解决了在支持sdn和基于雾的IoV网络中的负载平衡和安全通信问题。我们的方法(SaFIoV)使用强化学习(RL)方法有效地将任务分配到雾到雾和车辆到雾层。此外,通过区块链技术,我们的方法提供了安全的通信。我们的实验研究结果表明,SaFIoV可以有效地利用可用资源,同时避免拥塞和最小化延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Frequency Domain Simulation Method to Speed-up Analysis of Injection Locked Oscillators SaFIoV: A Secure and Fast Communication in Fog-based Internet-of-Vehicles using SDN and Blockchain Capacitor-Less Memristive Integrate-and-Fire Neuron with Stochastic Behavior Polynomial Filters with Controllable Overshoot In Their Step Transient Responses A low kickback noise and low power dynamic comparator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1