H. Stolberg, Mladen Berekovic, P. Pirsch, H. Runge, Henning Möller, J. Kneip
{"title":"The M-PIRE MPEG-4 codec DSP and its macroblock engine","authors":"H. Stolberg, Mladen Berekovic, P. Pirsch, H. Runge, Henning Möller, J. Kneip","doi":"10.1109/ISCAS.2000.856291","DOIUrl":null,"url":null,"abstract":"M-PIRE is a programmable MPEG-4 multimedia codec VLSI for mobile and stationary applications. It integrates a RISC core, two separate DSPs, a 64-bit dual-issue VLIW macroblock engine, and an autonomous I/O processor on a single chip to cope with the high flexibility and processing demands of the MPEG-4 standard. The first M-PIRE implementation will consume 90 mm/sup 2/ in 0.25 /spl mu/ CMOS technology. It will support real-time video and audio processing of MPEG-4 simple profile or ITU H.26x standards; future designs of M-PIRE will add support for higher MPEG-4 profiles. This paper focuses on the architecture, instruction set, and performance of M-PIRE's macroblock engine, which carries most of the workload in MPEG-4 video processing.","PeriodicalId":6422,"journal":{"name":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","volume":"187 1","pages":"192-195 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2000.856291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
M-PIRE is a programmable MPEG-4 multimedia codec VLSI for mobile and stationary applications. It integrates a RISC core, two separate DSPs, a 64-bit dual-issue VLIW macroblock engine, and an autonomous I/O processor on a single chip to cope with the high flexibility and processing demands of the MPEG-4 standard. The first M-PIRE implementation will consume 90 mm/sup 2/ in 0.25 /spl mu/ CMOS technology. It will support real-time video and audio processing of MPEG-4 simple profile or ITU H.26x standards; future designs of M-PIRE will add support for higher MPEG-4 profiles. This paper focuses on the architecture, instruction set, and performance of M-PIRE's macroblock engine, which carries most of the workload in MPEG-4 video processing.