Photocatalytic degradation of direct green & fast orange red dyes: Electrochemical sensor of lead using cupric oxide nanoparticles synthesized via sonochemical route

D.A. Raghupathy , G. Ramgopal , C.R. Ravikumar
{"title":"Photocatalytic degradation of direct green & fast orange red dyes: Electrochemical sensor of lead using cupric oxide nanoparticles synthesized via sonochemical route","authors":"D.A. Raghupathy ,&nbsp;G. Ramgopal ,&nbsp;C.R. Ravikumar","doi":"10.1016/j.sintl.2022.100204","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, nanocrystalline cupric oxide was produced using a basic, low-cost sonochemical method (CuO). Through powder X-ray diffraction, the phase and nanocrystalline nature of CuO nanoparticles (NPs) were determined. The Kubelka-Monk function revealed that the band gap of CuO in diffuse reflectance spectra (DRS) is 1.75 ​eV. Ingenious photocatalysts for the removal of the dyes Direct green (DG) and Fast orange red (F-OR) have been demonstrated to work with CuO NPs. To examine the photocatalytic characteristics of NPs under UV light and sunlight irradiation, Direct Green (DG) and Fast Orange Red (F-OR) dyes were utilised as traditional dyes. Direct green dye was found to be excited at 624.1 and 623.8 ​nm in UV and sunlight, while Fast orange red dye is excited at 496.8 and 495.1 ​nm. Lead in 0.1 ​N HCl solution was detected using the cyclic voltammetry (CV) method with a modified carbon paste electrode (MCPE). According to electrochemical performance, CuO is an advantageous sensing electrode material for an element like lead.</p></div>","PeriodicalId":21733,"journal":{"name":"Sensors International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666351122000493/pdfft?md5=25f33f1d2755138018f60e7307f8faf7&pid=1-s2.0-S2666351122000493-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors International","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666351122000493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, nanocrystalline cupric oxide was produced using a basic, low-cost sonochemical method (CuO). Through powder X-ray diffraction, the phase and nanocrystalline nature of CuO nanoparticles (NPs) were determined. The Kubelka-Monk function revealed that the band gap of CuO in diffuse reflectance spectra (DRS) is 1.75 ​eV. Ingenious photocatalysts for the removal of the dyes Direct green (DG) and Fast orange red (F-OR) have been demonstrated to work with CuO NPs. To examine the photocatalytic characteristics of NPs under UV light and sunlight irradiation, Direct Green (DG) and Fast Orange Red (F-OR) dyes were utilised as traditional dyes. Direct green dye was found to be excited at 624.1 and 623.8 ​nm in UV and sunlight, while Fast orange red dye is excited at 496.8 and 495.1 ​nm. Lead in 0.1 ​N HCl solution was detected using the cyclic voltammetry (CV) method with a modified carbon paste electrode (MCPE). According to electrochemical performance, CuO is an advantageous sensing electrode material for an element like lead.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光催化降解直接绿色和耐晒橙红色染料:声化学合成氧化铜纳米颗粒铅的电化学传感器
在这项研究中,使用一种基本的,低成本的声化学方法(CuO)生产纳米晶氧化铜。通过粉末x射线衍射,确定了CuO纳米颗粒(NPs)的物相和纳米晶性质。Kubelka-Monk函数表明,CuO在漫反射光谱(DRS)中的带隙为1.75 eV。直接绿(DG)和快速橙红(F-OR)光催化剂已被证明可用于CuO NPs。为了研究NPs在紫外光和日光照射下的光催化特性,采用直接绿(DG)和快橙红(F-OR)染料作为传统染料。直接绿色染料在紫外线和日光下的激发波长分别为624.1和623.8 nm,而快速橙红色染料的激发波长分别为496.8和495.1 nm。采用碳浆电极(MCPE)对0.1 N HCl溶液中的铅进行了循环伏安法(CV)检测。从电化学性能来看,氧化铜是铅等元素的一种有利的传感电极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
期刊最新文献
A method to detect enzymatic reactions with field effect transistor Blue luminescent carbon quantum dots derived from diverse banana peels for selective sensing of Fe(III) ions The application of ultrasonic measurement and machine learning technique to identify flow regime in a bubble column reactor A capacitive sensor-based approach for type-2 diabetes detection via bio-impedance analysis of erythrocytes GA-mADAM-IIoT: A new lightweight threats detection in the industrial IoT via genetic algorithm with attention mechanism and LSTM on multivariate time series sensor data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1