M. Hori, T. Shinada, F. Guagliardo, G. Ferrari, E. Prati
{"title":"Quantum transport property in FETs with deterministically implanted single-arsenic ions using single-ion implantation","authors":"M. Hori, T. Shinada, F. Guagliardo, G. Ferrari, E. Prati","doi":"10.1109/SNW.2012.6243338","DOIUrl":null,"url":null,"abstract":"We fabricated silicon transistors containing two and six arsenic ions implanted in one dimensional array along the channel by single-ion implantation method. The quantum transport was measured through the D0 and D- states of the arsenic ions at low temperature. We observed two different quantum transport regimes from the individual donor regime to the intermediate doping regime in which Hubbard bands are formed in agreement with the theoretical models. These results indicate that our deterministic single-ion doping method is more effective and reliable for single-dopant transistor development and pave the way towards single atom electronics for extended CMOS applications [12].","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"46 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2012.6243338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We fabricated silicon transistors containing two and six arsenic ions implanted in one dimensional array along the channel by single-ion implantation method. The quantum transport was measured through the D0 and D- states of the arsenic ions at low temperature. We observed two different quantum transport regimes from the individual donor regime to the intermediate doping regime in which Hubbard bands are formed in agreement with the theoretical models. These results indicate that our deterministic single-ion doping method is more effective and reliable for single-dopant transistor development and pave the way towards single atom electronics for extended CMOS applications [12].