Using Oil Spill Modeling in Oil Spill Exercises and Drills

M. Horn
{"title":"Using Oil Spill Modeling in Oil Spill Exercises and Drills","authors":"M. Horn","doi":"10.7901/2169-3358-2021.1.687970","DOIUrl":null,"url":null,"abstract":"\n Oil spill trajectory and fate modeling was used in inland response Full Scale Exercises including the Enbridge Des Plains River (fall 2018) and Wisconsin River (fall 2019). The Spill Impact Model Application Package (SIMAP) was used to predict the three-dimensional movement (i.e. trajectory) and behavior (i.e. fate) of a hypothetical release of oil using site-specific environmental and geographic conditions (including seasonal and hydrographic information) for the date of the exercise. The RPS OILMAPLand model was also used to predict the two-dimensional movement and behavior of the oil over the land surface, before it was predicted to enter the waterway. The oil spill modeling evaluated the spatial extent, timing, and magnitude of hydrocarbon contamination at downstream locations including thicknesses of floating surface oil and the mass of oil on shorelines and sediments. The assessments included the potential for released oil to move over the land surface, before entering the waterway, as well as becoming entrained in the water column as a result of surface floating oil passing over local features such as locks and dams. The results were presented at two separate exercise planning session and the full scale exercise as static images, GIS shape files, and videos. Results were also included in the COP for the exercise itself, with predicted results provided at hourly intervals for several days.","PeriodicalId":14447,"journal":{"name":"International Oil Spill Conference Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Oil Spill Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7901/2169-3358-2021.1.687970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Oil spill trajectory and fate modeling was used in inland response Full Scale Exercises including the Enbridge Des Plains River (fall 2018) and Wisconsin River (fall 2019). The Spill Impact Model Application Package (SIMAP) was used to predict the three-dimensional movement (i.e. trajectory) and behavior (i.e. fate) of a hypothetical release of oil using site-specific environmental and geographic conditions (including seasonal and hydrographic information) for the date of the exercise. The RPS OILMAPLand model was also used to predict the two-dimensional movement and behavior of the oil over the land surface, before it was predicted to enter the waterway. The oil spill modeling evaluated the spatial extent, timing, and magnitude of hydrocarbon contamination at downstream locations including thicknesses of floating surface oil and the mass of oil on shorelines and sediments. The assessments included the potential for released oil to move over the land surface, before entering the waterway, as well as becoming entrained in the water column as a result of surface floating oil passing over local features such as locks and dams. The results were presented at two separate exercise planning session and the full scale exercise as static images, GIS shape files, and videos. Results were also included in the COP for the exercise itself, with predicted results provided at hourly intervals for several days.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在溢油演习和演练中使用溢油建模
在内陆响应全尺度演习中使用了溢油轨迹和命运模型,包括恩布里奇德普莱恩斯河(2018年秋季)和威斯康星河(2019年秋季)。使用溢油影响模型应用程序包(SIMAP),根据演习日期现场特定的环境和地理条件(包括季节和水文信息),预测假设的溢油释放的三维运动(即轨迹)和行为(即命运)。RPS OILMAPLand模型还用于预测石油在进入水道之前在陆地表面的二维运动和行为。石油泄漏模型评估了下游地区碳氢化合物污染的空间范围、时间和程度,包括浮油的厚度以及海岸线和沉积物上的石油质量。评估包括释放的石油在进入水道之前在陆地表面移动的可能性,以及由于水面漂浮的石油经过当地特征(如船闸和水坝)而被水柱夹带的可能性。结果以静态图像、GIS形状文件和视频的形式在两个单独的演习计划会议和全规模演习中呈现。演习本身的结果也包括在COP中,每隔一小时提供数天的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From the deep ocean to the coasts and estuaries through the shelf: linking coastal response to a deep blow-out Case Study of a SCAT Survey and Successful Remediation Strategy by Mechanical Mixing of a Fuel Oil Spill into a Mountain Stream Using Oil Spill Modeling in Oil Spill Exercises and Drills In Situ Burn Testing of Weathered and Emulsified Crude Oils Historical Dispersant Use in U.S. Waters 1968–2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1