{"title":"Simulation of Coalescence and Breakup of Dispersed Water Droplets in Continuous Oil Phase","authors":"S. Yuan, Ramin Dabirian, R. Mohan, O. Shoham","doi":"10.1115/FEDSM2018-83314","DOIUrl":null,"url":null,"abstract":"Petroleum industry uses shear devices such as chokes, valves, orifices and pumps, which cause droplet coalescence and breakup making the downstream separation process very challenging. Droplet-droplet coalescence leads to formation of larger droplets, which accelerate the phase separation, whereas the breakup of larger droplets into smaller ones delays the separation process.\n Computational Fluid Dynamic (CFD) simulations are conducted by ANSYS-Fluent software to track the droplet breakup and droplet-droplet coalescence, where the interfaces between the two phases are tracked by the Volume of Fluid (VOF) model. The material of droplet is water, while the continuous phase is oil. In this study, the effect of variables such as droplet diameter, droplet relative velocities as well as droplet motion directions on the time evolution of droplet-droplet coalescence and breakup is evaluated.\n The simulation results confirm that smaller droplet collisions lead to coalescence under wide ranges of droplet relative velocities, while larger droplet collisions result in droplet breakup at higher relative velocities. During coalescence, two droplets combine into one droplet, which deform in several times from one direction to orthogonal direction until recovering its shape or breakup. In addition, the simulation results show that fastest coalescence takes place when droplet collisions occur at optimum relative velocity, whereas droplet breakup occurs at higher velocities than the optimum velocity, and delay in coalescence happens at lower velocity. Furthermore, the simulation results clearly show that droplet moving direction play an important role in the occurrence of droplet coalescence and breakup. Comparison of the simulation results with the collected experimental data from literature confirm that the simulations are capable of predicting the evolution time of the droplet coalescence and breakup with high accuracy.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"206 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Petroleum industry uses shear devices such as chokes, valves, orifices and pumps, which cause droplet coalescence and breakup making the downstream separation process very challenging. Droplet-droplet coalescence leads to formation of larger droplets, which accelerate the phase separation, whereas the breakup of larger droplets into smaller ones delays the separation process. Computational Fluid Dynamic (CFD) simulations are conducted by ANSYS-Fluent software to track the droplet breakup and droplet-droplet coalescence, where the interfaces between the two phases are tracked by the Volume of Fluid (VOF) model. The material of droplet is water, while the continuous phase is oil. In this study, the effect of variables such as droplet diameter, droplet relative velocities as well as droplet motion directions on the time evolution of droplet-droplet coalescence and breakup is evaluated. The simulation results confirm that smaller droplet collisions lead to coalescence under wide ranges of droplet relative velocities, while larger droplet collisions result in droplet breakup at higher relative velocities. During coalescence, two droplets combine into one droplet, which deform in several times from one direction to orthogonal direction until recovering its shape or breakup. In addition, the simulation results show that fastest coalescence takes place when droplet collisions occur at optimum relative velocity, whereas droplet breakup occurs at higher velocities than the optimum velocity, and delay in coalescence happens at lower velocity. Furthermore, the simulation results clearly show that droplet moving direction play an important role in the occurrence of droplet coalescence and breakup. Comparison of the simulation results with the collected experimental data from literature confirm that the simulations are capable of predicting the evolution time of the droplet coalescence and breakup with high accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连续油相中分散水滴聚结破碎的模拟
石油工业使用剪切装置,如节流器、阀门、孔板和泵,这些设备会导致液滴聚结和破裂,这使得下游分离过程非常具有挑战性。液滴-液滴结合导致大液滴的形成,加速了相分离,而大液滴分裂成小液滴则延迟了分离过程。利用ANSYS-Fluent软件进行计算流体动力学(CFD)模拟,跟踪液滴破碎和液滴聚并过程,采用流体体积(VOF)模型跟踪两相界面。液滴的物质是水,而连续相是油。本研究评估了液滴直径、液滴相对速度、液滴运动方向等变量对液滴聚并破碎时间演化的影响。仿真结果表明,在较宽的相对速度范围内,较小的液滴碰撞导致聚并,较大的液滴碰撞导致较高的相对速度范围内的液滴破碎。在聚结过程中,两个液滴结合成一个液滴,从一个方向到正交方向进行多次变形,直至恢复形状或破裂。另外,仿真结果表明,在最佳相对速度下,液滴碰撞发生时,聚结速度最快,而在高于最佳相对速度时,液滴发生破裂,在较低速度时,聚结延迟。此外,模拟结果清楚地表明,液滴的运动方向对液滴合并和破裂的发生起着重要作用。将模拟结果与文献收集的实验数据进行比较,证实了模拟能够较准确地预测液滴聚结和破裂的演化时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Investigation of a Flapping Motion Downstream of a Backward Facing Step Experimental Study on Modeled Caudal Fins Propelling by Elastic Deformation Simulation of Coalescence and Breakup of Dispersed Water Droplets in Continuous Oil Phase Multi-Objective Optimization on Inlet Pipe of a Vertical Inline Pump Based on Genetic Algorithm and Artificial Neural Network Turbulent Flow Characteristics Over Offset Wall Confined Columns in a Channel at Low Reynolds Numbers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1