{"title":"Turbulent Flow Characteristics Over Offset Wall Confined Columns in a Channel at Low Reynolds Numbers","authors":"K. Toxopeus, K. Siddiqui","doi":"10.1115/FEDSM2018-83519","DOIUrl":null,"url":null,"abstract":"The current study is focused on the flow through offset, wall confined vertical inserts in a channel. The columns are intended to act as the thermal storage media, which continuously exchange heat with the channel fluid to regulate it thermally. These columns could, for example, be filled with a phase change material (PCM) for passive thermal regulation, or have hot or cold fluid pumped through them for active thermal regulation. The current study has two parts: (1) the flow characterization without heat transfer, and (2) flow characterization during thermal exchange with a PCM used for regulation of bulk fluid temperature. The work presented here is focused only on the first part of the study.\n The experiments were conducted in a narrow channel, with water as the working fluid. Two geometries of the vertical columns (circular and square) and two offset lengths were considered. For each configuration, experiments were conducted at Reynolds numbers of 20, 50 and 90 (based of the column’s characteristic length). Particle image velocimetry was used to measure the two-dimensional velocity field in a horizontal plane at multiple regions of interest along the length of the channel to characterize the flow passing over columns. The results indicate vortex shedding at the two higher Reynolds numbers. The generation, magnitude and decay rate of turbulent energy is shown to have an offset dependency at Re = 90, but a column shape dependency at Re = 50. The mean flow has a shape dependency due to the difference in separation point over the square and circular columns.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"184 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The current study is focused on the flow through offset, wall confined vertical inserts in a channel. The columns are intended to act as the thermal storage media, which continuously exchange heat with the channel fluid to regulate it thermally. These columns could, for example, be filled with a phase change material (PCM) for passive thermal regulation, or have hot or cold fluid pumped through them for active thermal regulation. The current study has two parts: (1) the flow characterization without heat transfer, and (2) flow characterization during thermal exchange with a PCM used for regulation of bulk fluid temperature. The work presented here is focused only on the first part of the study. The experiments were conducted in a narrow channel, with water as the working fluid. Two geometries of the vertical columns (circular and square) and two offset lengths were considered. For each configuration, experiments were conducted at Reynolds numbers of 20, 50 and 90 (based of the column’s characteristic length). Particle image velocimetry was used to measure the two-dimensional velocity field in a horizontal plane at multiple regions of interest along the length of the channel to characterize the flow passing over columns. The results indicate vortex shedding at the two higher Reynolds numbers. The generation, magnitude and decay rate of turbulent energy is shown to have an offset dependency at Re = 90, but a column shape dependency at Re = 50. The mean flow has a shape dependency due to the difference in separation point over the square and circular columns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低雷诺数通道内偏置壁面约束柱的湍流特性
目前的研究主要集中在通过偏置、壁面受限的通道内垂直嵌段的流动。柱的目的是作为储热介质,它不断地与通道流体交换热量,以调节它的热。例如,这些柱可以填充相变材料(PCM)进行被动热调节,或者通过泵送热或冷流体进行主动热调节。目前的研究分为两部分:(1)无换热时的流动表征;(2)用PCM调节整体流体温度进行换热时的流动表征。这里介绍的工作只集中在研究的第一部分。实验是在一个狭窄的通道中进行的,以水为工作流体。考虑了两种垂直柱的几何形状(圆形和方形)和两种偏移长度。对于每种构型,分别在雷诺数为20、50和90(基于柱的特征长度)的条件下进行实验。粒子图像测速技术用于测量沿通道长度的多个感兴趣区域在水平面上的二维速度场,以表征流过柱的流动。结果表明,在两个较高雷诺数下存在涡脱落现象。在Re = 90时,湍流能量的产生、大小和衰减率与偏移量相关,而在Re = 50时则与柱形相关。由于方形柱和圆形柱上的分离点不同,平均流具有形状依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Investigation of a Flapping Motion Downstream of a Backward Facing Step Experimental Study on Modeled Caudal Fins Propelling by Elastic Deformation Simulation of Coalescence and Breakup of Dispersed Water Droplets in Continuous Oil Phase Multi-Objective Optimization on Inlet Pipe of a Vertical Inline Pump Based on Genetic Algorithm and Artificial Neural Network Turbulent Flow Characteristics Over Offset Wall Confined Columns in a Channel at Low Reynolds Numbers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1