Uncertainty-aware robust optimization of test-access architectures for 3D stacked ICs

Sergej Deutsch, K. Chakrabarty, E. Marinissen
{"title":"Uncertainty-aware robust optimization of test-access architectures for 3D stacked ICs","authors":"Sergej Deutsch, K. Chakrabarty, E. Marinissen","doi":"10.1109/TEST.2013.6651905","DOIUrl":null,"url":null,"abstract":"3D integration using through-silicon vias offers many benefits, such as high bandwidth, low power, and small footprint. However, test complexity and test cost are major concerns for 3D-SICs. Recent work on the optimization of 3D test architectures to reduce test cost suffer from the drawback that they ignore potential uncertainties in input parameters; they consider only a single point in the input-parameter space. In realistic scenarios, the assumed values for parameters such as test power and pattern count of logic cores, which are used for optimizing the test architecture for a die, may differ from the actual values that are known only after the design stage. In a 3D setting, a die can be used in multiple stacks each with different properties. As a result, the originally designed test architecture might no longer be optimal, which leads to an undesirable increase in the test cost. We propose an optimization approach that takes uncertainties in input parameters into account and provides a solution that is efficient in the presence of input-parameter variations. We use integer linear programming (ILP) to formulate the robust test-architecture optimization problem, and the resulting ILP model serves as the basis for a heuristic solution that scales well for large designs. The proposed optimization framework is evaluated using the ITC'02 SoC benchmarks and we show that robust solutions are superior to single-point solutions in terms of average test time when there are uncertainties in the values of input parameters.","PeriodicalId":6379,"journal":{"name":"2013 IEEE International Test Conference (ITC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2013.6651905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

3D integration using through-silicon vias offers many benefits, such as high bandwidth, low power, and small footprint. However, test complexity and test cost are major concerns for 3D-SICs. Recent work on the optimization of 3D test architectures to reduce test cost suffer from the drawback that they ignore potential uncertainties in input parameters; they consider only a single point in the input-parameter space. In realistic scenarios, the assumed values for parameters such as test power and pattern count of logic cores, which are used for optimizing the test architecture for a die, may differ from the actual values that are known only after the design stage. In a 3D setting, a die can be used in multiple stacks each with different properties. As a result, the originally designed test architecture might no longer be optimal, which leads to an undesirable increase in the test cost. We propose an optimization approach that takes uncertainties in input parameters into account and provides a solution that is efficient in the presence of input-parameter variations. We use integer linear programming (ILP) to formulate the robust test-architecture optimization problem, and the resulting ILP model serves as the basis for a heuristic solution that scales well for large designs. The proposed optimization framework is evaluated using the ITC'02 SoC benchmarks and we show that robust solutions are superior to single-point solutions in terms of average test time when there are uncertainties in the values of input parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维堆叠集成电路测试存取架构的不确定性感知鲁棒优化
使用硅通孔的3D集成具有许多优点,例如高带宽、低功耗和小占地面积。然而,测试复杂性和测试成本是3d - sic的主要问题。为了降低测试成本,最近对3D测试架构进行优化的工作存在一个缺点,即忽略了输入参数中潜在的不确定性;它们只考虑输入参数空间中的单个点。在实际场景中,用于优化模具测试架构的逻辑核的测试功率和模式计数等参数的假设值可能与仅在设计阶段之后才知道的实际值不同。在3D设置中,一个骰子可以在多个堆栈中使用,每个堆栈具有不同的属性。因此,最初设计的测试体系结构可能不再是最优的,这将导致测试成本的增加。我们提出了一种考虑输入参数不确定性的优化方法,并提供了一种在输入参数变化的情况下有效的解决方案。我们使用整数线性规划(ILP)来制定稳健的测试架构优化问题,并且由此产生的ILP模型作为启发式解决方案的基础,该解决方案可以很好地用于大型设计。使用ITC'02 SoC基准对所提出的优化框架进行了评估,我们表明,当输入参数值存在不确定性时,鲁棒性解决方案在平均测试时间方面优于单点解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-system diagnosis of RF ICs for tolerance against on-chip in-band interferers Uncertainty-aware robust optimization of test-access architectures for 3D stacked ICs FPGA-based universal embedded digital instrument Early-life-failure detection using SAT-based ATPG Self-repair of uncore components in robust system-on-chips: An OpenSPARC T2 case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1