P. Muralidharan, S. Bowden, S. Goodnick, D. Vasileska
{"title":"A Multiscale Model to Study Transport in Silicon Heterojunction Solar Cells","authors":"P. Muralidharan, S. Bowden, S. Goodnick, D. Vasileska","doi":"10.1109/PVSC.2018.8547337","DOIUrl":null,"url":null,"abstract":"Silicon heterojunction solar cells comprised of crystalline silicon and a thin amorphous silicon top layer, have consistently achieved record device efficiencies in recent years for Si devices. In particular, the intrinsic amorphous layer provides passivation at the a-Si/c-Si heterointerface that facilitates high $\\mathrm {V}_{\\mathrm {o}\\mathrm {c}}'\\mathrm {s}$. However, this heterointerface also results in high fields where hot carrier effects may dominate, in contrast to low-field diffusive transport which is prevalent in the bulk of the device. In this paper we present a fully coupled self-consistent drift-diffusion-Monte Carlo (DD-MC) solver that connects the Lowfield physics of the drift-diffusion model with the high-field physics of the Monte Carlo domain at the interface.","PeriodicalId":6558,"journal":{"name":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","volume":"48 1","pages":"3200-3203"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2018.8547337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon heterojunction solar cells comprised of crystalline silicon and a thin amorphous silicon top layer, have consistently achieved record device efficiencies in recent years for Si devices. In particular, the intrinsic amorphous layer provides passivation at the a-Si/c-Si heterointerface that facilitates high $\mathrm {V}_{\mathrm {o}\mathrm {c}}'\mathrm {s}$. However, this heterointerface also results in high fields where hot carrier effects may dominate, in contrast to low-field diffusive transport which is prevalent in the bulk of the device. In this paper we present a fully coupled self-consistent drift-diffusion-Monte Carlo (DD-MC) solver that connects the Lowfield physics of the drift-diffusion model with the high-field physics of the Monte Carlo domain at the interface.