{"title":"Impact of substrate thickness on the surface passivation in high performance n-type solar cells","authors":"A. Augusto, P. Balaji, J. Karas, S. Bowden","doi":"10.1109/PVSC.2018.8548174","DOIUrl":null,"url":null,"abstract":"Recently, silicon solar cells surpassed 26% efficiency. This was a result of remarkable low surface saturation current density and high short-circuit current provided by the SHJ-IBC architecture. In this paper we study the contribution of the different recombination mechanisms to shape the voltage at open-circuit and maximum power for different solar cell thicknesses. We demonstrate thinner cells are required to increase further the efficiency toward the intrinsic limit, as voltage increases and bulk lifetime dependence decreases. Open-circuit voltages over 760 mV were experimental confirmed on 50 μm-thick SHJ structures, leading to bandgap-voltage offsets of 0.349V.","PeriodicalId":6558,"journal":{"name":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","volume":"1 1","pages":"2792-2794"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2018.8548174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Recently, silicon solar cells surpassed 26% efficiency. This was a result of remarkable low surface saturation current density and high short-circuit current provided by the SHJ-IBC architecture. In this paper we study the contribution of the different recombination mechanisms to shape the voltage at open-circuit and maximum power for different solar cell thicknesses. We demonstrate thinner cells are required to increase further the efficiency toward the intrinsic limit, as voltage increases and bulk lifetime dependence decreases. Open-circuit voltages over 760 mV were experimental confirmed on 50 μm-thick SHJ structures, leading to bandgap-voltage offsets of 0.349V.