Research on BCB/Cu thin film multilayer interconnection technology based on LTCC substrate for Microsystem Integration

Jing Chen, Lei Ding, Weipeng Ren, Tao Chen, Lichun Wang, Tao Zhao
{"title":"Research on BCB/Cu thin film multilayer interconnection technology based on LTCC substrate for Microsystem Integration","authors":"Jing Chen, Lei Ding, Weipeng Ren, Tao Chen, Lichun Wang, Tao Zhao","doi":"10.1109/ICEPT47577.2019.245776","DOIUrl":null,"url":null,"abstract":"Considering the requirements of Microsystems miniaturization integration for high-performance film-forming substrates, the key technologies of multilayer BCB/Cu thin film interconnection based on LTCC substrates and the related process controls were studied. A high reliability \"T\" interface interconnection method for thin film magnetron sputtering Cr/Cu/Cr and Cr/Pd/Au composite membrane structure and its preparation method were proposed. The effects of the interface defect and roughness of LTCC-thin film, the control of residual photoresist quantity in BCB film through holes and the stress of metallization of dielectric membrane on the quality of thick thin film composite substrate were studied. The prepared 12-layer thick thin film mixed substrate(10 layers LTCC substrate, 2 layers of thin film wiring) 60 pieces, all passed the GJB2438 C. 2.7 film substrate evaluation standard. Compared to the LTCC substrate, the wiring density is increased by 4 times, size reduced by 40 %.","PeriodicalId":6676,"journal":{"name":"2019 20th International Conference on Electronic Packaging Technology(ICEPT)","volume":"57 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Electronic Packaging Technology(ICEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPT47577.2019.245776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Considering the requirements of Microsystems miniaturization integration for high-performance film-forming substrates, the key technologies of multilayer BCB/Cu thin film interconnection based on LTCC substrates and the related process controls were studied. A high reliability "T" interface interconnection method for thin film magnetron sputtering Cr/Cu/Cr and Cr/Pd/Au composite membrane structure and its preparation method were proposed. The effects of the interface defect and roughness of LTCC-thin film, the control of residual photoresist quantity in BCB film through holes and the stress of metallization of dielectric membrane on the quality of thick thin film composite substrate were studied. The prepared 12-layer thick thin film mixed substrate(10 layers LTCC substrate, 2 layers of thin film wiring) 60 pieces, all passed the GJB2438 C. 2.7 film substrate evaluation standard. Compared to the LTCC substrate, the wiring density is increased by 4 times, size reduced by 40 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微系统集成中基于LTCC衬底的BCB/Cu薄膜多层互连技术研究
考虑到高性能成膜衬底对微系统小型化集成化的要求,研究了基于LTCC衬底的多层BCB/Cu薄膜互连的关键技术及相关工艺控制。提出了一种高可靠性磁控溅射Cr/Cu/Cr和Cr/Pd/Au复合膜结构的“T”界面互连方法及其制备方法。研究了ltcc -薄膜的界面缺陷和粗糙度、BCB膜孔中残留光刻胶量的控制以及介质膜金属化应力对厚薄膜复合基板质量的影响。所制备的12层厚薄膜混合衬底(10层LTCC衬底,2层薄膜布线)60片,均通过gjb2438c . 2.7薄膜衬底评价标准。与LTCC基板相比,布线密度增加了4倍,尺寸减小了40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Laser-assisted Glass Frit Bonding Combined With Blue Light-shielding Dynamic resistance monitoring of aging process of pressureless sintered nano-silver joints Warpage simulation method development considering moiré inhomogeneous temperature field Size effects on segregated growth kinetics of interfacial IMC between Sn solder and Cu substrate Ultrasound-assisted soldering process performance of Sn-Ag-Ti(Ce, Ga) active solders on thin film ZnO substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1