Chul Kim, Jiwoong Park, Abraham Akinin, S. Ha, R. Kubendran, Hui Wang, P. Mercier, G. Cauwenberghs
{"title":"A fully integrated 144 MHz wireless-power-receiver-on-chip with an adaptive buck-boost regulating rectifier and low-loss H-Tree signal distribution","authors":"Chul Kim, Jiwoong Park, Abraham Akinin, S. Ha, R. Kubendran, Hui Wang, P. Mercier, G. Cauwenberghs","doi":"10.1109/VLSIC.2016.7573492","DOIUrl":null,"url":null,"abstract":"An adaptive buck-boost resonant regulating rectifier (B<sup>2</sup>R<sup>3</sup>) with an integrated on-chip coil and low-loss H-Tree power/signal distribution is presented for efficient and robust wireless power transfer (WPT) over a wide range of input and load conditions. The B<sup>2</sup>R<sup>3</sup> integrated on a 9 mm<sup>2</sup> chip powers integrated neural interfacing circuits as a load, with a TX-load power conversion efficiency of 2.64 % at 10 mm distance, resulting in a WPT system efficiency FoM of 102.","PeriodicalId":6512,"journal":{"name":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","volume":"2014 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2016.7573492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
An adaptive buck-boost resonant regulating rectifier (B2R3) with an integrated on-chip coil and low-loss H-Tree power/signal distribution is presented for efficient and robust wireless power transfer (WPT) over a wide range of input and load conditions. The B2R3 integrated on a 9 mm2 chip powers integrated neural interfacing circuits as a load, with a TX-load power conversion efficiency of 2.64 % at 10 mm distance, resulting in a WPT system efficiency FoM of 102.