{"title":"Review of Sensing Methodologies for Estimation of Combustion Metrics","authors":"Libin Jia, J. Naber, J. Blough","doi":"10.1155/2016/8593523","DOIUrl":null,"url":null,"abstract":"For reduction of engine-out emissions and improvement of fuel economy, closed-loop control of the combustion process has been explored and documented by many researchers. In the closed-loop control, the engine control parameters are optimized according to the estimated instantaneous combustion metrics provided by the combustion sensing process. Combustion sensing process is primarily composed of two aspects: combustion response signal acquisition and response signal processing. As a number of different signals have been employed as the response signal and the signal processing techniques can be different, this paper did a review work concerning the two aspects: combustion response signals and signal processing techniques. In-cylinder pressure signal was not investigated as one of the response signals in this paper since it has been studied and documented in many publications and also due to its high cost and inconvenience in the application.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":"22 1","pages":"1-9"},"PeriodicalIF":1.5000,"publicationDate":"2016-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/8593523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 12
Abstract
For reduction of engine-out emissions and improvement of fuel economy, closed-loop control of the combustion process has been explored and documented by many researchers. In the closed-loop control, the engine control parameters are optimized according to the estimated instantaneous combustion metrics provided by the combustion sensing process. Combustion sensing process is primarily composed of two aspects: combustion response signal acquisition and response signal processing. As a number of different signals have been employed as the response signal and the signal processing techniques can be different, this paper did a review work concerning the two aspects: combustion response signals and signal processing techniques. In-cylinder pressure signal was not investigated as one of the response signals in this paper since it has been studied and documented in many publications and also due to its high cost and inconvenience in the application.