Comparative Analysis of Swirl Burner and Cross Jet Burner in Terms of Efficiency and Environmental Performance

IF 1.5 Q3 ENGINEERING, CHEMICAL Journal of Combustion Pub Date : 2023-08-18 DOI:10.1155/2023/1692296
M. Zhumagulov, M. V. Dolgov, A. Baubek, Alexander M. Gribkov
{"title":"Comparative Analysis of Swirl Burner and Cross Jet Burner in Terms of Efficiency and Environmental Performance","authors":"M. Zhumagulov, M. V. Dolgov, A. Baubek, Alexander M. Gribkov","doi":"10.1155/2023/1692296","DOIUrl":null,"url":null,"abstract":"The article contains a comparative analysis of two types of burners used in different methods of fuel-air mixture preparation: (1) vortex mixing and (2) mixing with transverse jets. The analysis was carried out in order to determine which one of the two burning devices is more efficient and has better environmental performance. In device no. 1, conditions for the fuel-air mixture formation are created by vortex turbulence. The basic principle lying at the core of this design is a vortex flow inside, which provokes a more intense mixing of fuel and air. Moreover, preliminary physical and thermal treatment of the fuel-air mixture has a positive effect on its environmental performance. In contrast, in device no. 2 based on transverse jets’ active mixture formation is achieved through collision of air and fuel flows at an angle close to 90°. The research was based on an experiment carried out with the use of a laboratory firing stand. Flue gas samples were analyzed in order to compare the main harmful air emission indicators with TESTO 350-XL gas analyzer. A propane-butane mixture of 60% C3H8 (propane) and 40% C4H10 (butane) was used as the main fuel. Some indicators were determined after the experiment: measurement units conversion from “ppm” to “mg/m3,” excess air ratio α and equivalence ratio φ, flue gas concentrations recalculation taking oxygen into account, fuel calorific value, and heat release rate. The analysis results are as follows: (i) the swirl burner shows better performance in terms of nitrogen oxides (NOx) emissions; there is a 1.75-fold difference in total NOx emissions compared to the cross jet burner; (ii) the burner on transverse jets is 10 times more efficient than the swirl burner in terms of carbon monoxide (CO) emissions.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/1692296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The article contains a comparative analysis of two types of burners used in different methods of fuel-air mixture preparation: (1) vortex mixing and (2) mixing with transverse jets. The analysis was carried out in order to determine which one of the two burning devices is more efficient and has better environmental performance. In device no. 1, conditions for the fuel-air mixture formation are created by vortex turbulence. The basic principle lying at the core of this design is a vortex flow inside, which provokes a more intense mixing of fuel and air. Moreover, preliminary physical and thermal treatment of the fuel-air mixture has a positive effect on its environmental performance. In contrast, in device no. 2 based on transverse jets’ active mixture formation is achieved through collision of air and fuel flows at an angle close to 90°. The research was based on an experiment carried out with the use of a laboratory firing stand. Flue gas samples were analyzed in order to compare the main harmful air emission indicators with TESTO 350-XL gas analyzer. A propane-butane mixture of 60% C3H8 (propane) and 40% C4H10 (butane) was used as the main fuel. Some indicators were determined after the experiment: measurement units conversion from “ppm” to “mg/m3,” excess air ratio α and equivalence ratio φ, flue gas concentrations recalculation taking oxygen into account, fuel calorific value, and heat release rate. The analysis results are as follows: (i) the swirl burner shows better performance in terms of nitrogen oxides (NOx) emissions; there is a 1.75-fold difference in total NOx emissions compared to the cross jet burner; (ii) the burner on transverse jets is 10 times more efficient than the swirl burner in terms of carbon monoxide (CO) emissions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旋流燃烧器与交叉喷射燃烧器效率与环保性能的对比分析
本文对两种不同燃料-空气混合气制备方法的燃烧器进行了比较分析:(1)涡旋混合和(2)横向射流混合。进行分析是为了确定两种燃烧装置中哪一种效率更高,具有更好的环保性能。在设备编号中。涡流紊流创造了燃料-空气混合物形成的条件。这个设计核心的基本原理是内部的涡流,它能促进燃料和空气的强烈混合。此外,对燃料-空气混合物进行初步的物理和热处理对其环境性能有积极的影响。相反,在设备编号。2基于横向射流的主动混合气形成是通过气流与燃油流以接近90°的角度碰撞实现的。这项研究是基于使用实验室射击架进行的实验。对烟气样品进行分析,用TESTO 350-XL气体分析仪对主要有害气体排放指标进行比较。采用60% C3H8(丙烷)和40% C4H10(丁烷)的丙烷-丁烷混合物作为主要燃料。实验后确定了一些指标:测量单位由“ppm”转换为“mg/m3”,过量空气比α和等效比φ,考虑氧气的烟气浓度重新计算,燃料热值,放热率。分析结果表明:(1)涡流燃烧器在氮氧化物(NOx)排放方面表现出更好的性能;与交叉喷射燃烧器相比,总氮氧化物排放量相差1.75倍;(ii)燃烧器上的横向射流是10倍以上的效率比旋涡燃烧器在一氧化碳(CO)排放方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Combustion
Journal of Combustion ENGINEERING, CHEMICAL-
CiteScore
2.00
自引率
28.60%
发文量
8
审稿时长
20 weeks
期刊最新文献
Design, Modeling, and Feasibility Analysis of Rotary Valve for Internal Combustion Engine Comparative Analysis of Swirl Burner and Cross Jet Burner in Terms of Efficiency and Environmental Performance Uranium Dust Cloud Combustion: Burning Characteristics and Absorption Spectroscopy Measurements An Overview of Energy Recovery from Local Slaughterhouse-Based Gallus gallus domesticus Greasy Residues and Latest Applications Effectiveness of Charcoal Adsorbent in Flue Gas Filters for PCB Reduction in Smoke from Hospital Incinerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1