Effects of Gasoline and Hydrogen Blends on Exhaust Gas Emissions and Fuel Consumption from Gasoline Internal Combustion Engines

IF 1.5 Q3 ENGINEERING, CHEMICAL Journal of Combustion Pub Date : 2022-09-14 DOI:10.1155/2022/5526205
Merlin Zacharie Ayissi, I. Newen, R. Alloune, D. Bitondo
{"title":"Effects of Gasoline and Hydrogen Blends on Exhaust Gas Emissions and Fuel Consumption from Gasoline Internal Combustion Engines","authors":"Merlin Zacharie Ayissi, I. Newen, R. Alloune, D. Bitondo","doi":"10.1155/2022/5526205","DOIUrl":null,"url":null,"abstract":"Gasoline engines remain a potential source of atmospheric pollution. Dual fuel combustion was under investigation to cope with exposure to pollutants. Investigations on emission parameters and engine performance for a single-cylinder four-stroke petrol engine are carried out using multicriteria decision-making method (MCDM). Bar charts are constructed for three emission parameters in function of engine temperature and fuel consumption for different blends. Fuels were supplied at different engine running speeds. Parameters recorded during the experimental study were the concentrations of carbon monoxide (CO), hydrogen sulfide (H2S), percentages of lower explosive limit (LEL), and combustion duration. The maximum concentration of CO was 339 ppm at 70°C and 4000 rpm. The maximum concentration of H2S (3 ppm), was recorded at 94°C and 4000 rpm. The maximum percentage of LEL recorded was 3% at the majority of temperature and 4000 rpm. Consumption of 25 Cl of (gasoline + HHO) was recorded during the maximum time (50 min). The experiment showed high emissions of CO that can provoke respiratory disorders and explosive gases, factors of explosion at high speeds (4000 rpm), and low temperature (70°C). H2S emissions are very low (0–3 ppm) independently of the engine speeds and temperature. Blending gasoline with HHO shows a reduction in fuel consumption.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/5526205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Gasoline engines remain a potential source of atmospheric pollution. Dual fuel combustion was under investigation to cope with exposure to pollutants. Investigations on emission parameters and engine performance for a single-cylinder four-stroke petrol engine are carried out using multicriteria decision-making method (MCDM). Bar charts are constructed for three emission parameters in function of engine temperature and fuel consumption for different blends. Fuels were supplied at different engine running speeds. Parameters recorded during the experimental study were the concentrations of carbon monoxide (CO), hydrogen sulfide (H2S), percentages of lower explosive limit (LEL), and combustion duration. The maximum concentration of CO was 339 ppm at 70°C and 4000 rpm. The maximum concentration of H2S (3 ppm), was recorded at 94°C and 4000 rpm. The maximum percentage of LEL recorded was 3% at the majority of temperature and 4000 rpm. Consumption of 25 Cl of (gasoline + HHO) was recorded during the maximum time (50 min). The experiment showed high emissions of CO that can provoke respiratory disorders and explosive gases, factors of explosion at high speeds (4000 rpm), and low temperature (70°C). H2S emissions are very low (0–3 ppm) independently of the engine speeds and temperature. Blending gasoline with HHO shows a reduction in fuel consumption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
汽油和氢混合燃料对汽油内燃机废气排放和燃料消耗的影响
汽油发动机仍然是大气污染的潜在来源。当局正在调查双燃料燃烧,以处理接触污染物的情况。采用多准则决策方法对某型单缸四冲程汽油机的排放参数和发动机性能进行了研究。建立了三种排放参数随发动机温度和油耗变化的柱状图。以不同的发动机转速提供燃料。实验研究中记录的参数有一氧化碳(CO)、硫化氢(H2S)浓度、爆炸下限百分比(LEL)和燃烧持续时间。在70℃、4000 rpm条件下,CO的最大浓度为339 ppm。在94°C和4000 rpm下记录H2S的最大浓度(3ppm)。在大多数温度和4000 rpm下,LEL记录的最大百分比为3%。在最大时间(50min)记录25 Cl(汽油+ HHO)的消耗量。实验表明,CO的高排放可引起呼吸系统疾病和爆炸性气体,高速(4000转/分)和低温(70°C)下的爆炸因素。H2S排放非常低(0 - 3ppm),与发动机转速和温度无关。将汽油与HHO混合可以减少燃料消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Combustion
Journal of Combustion ENGINEERING, CHEMICAL-
CiteScore
2.00
自引率
28.60%
发文量
8
审稿时长
20 weeks
期刊最新文献
Design, Modeling, and Feasibility Analysis of Rotary Valve for Internal Combustion Engine Comparative Analysis of Swirl Burner and Cross Jet Burner in Terms of Efficiency and Environmental Performance Uranium Dust Cloud Combustion: Burning Characteristics and Absorption Spectroscopy Measurements An Overview of Energy Recovery from Local Slaughterhouse-Based Gallus gallus domesticus Greasy Residues and Latest Applications Effectiveness of Charcoal Adsorbent in Flue Gas Filters for PCB Reduction in Smoke from Hospital Incinerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1