Sheikh Tanzim Meraj, Nor Zaihar Yahaya, B. Singh, R. Kannan
{"title":"Implementation of a Robust Hydrogen-based Grid System to Enhance Power Quality","authors":"Sheikh Tanzim Meraj, Nor Zaihar Yahaya, B. Singh, R. Kannan","doi":"10.1109/PECon48942.2020.9314536","DOIUrl":null,"url":null,"abstract":"This manuscript proposes a robust hydrogen-based grid system to improve the power quality of the microgrid. Advancement in hydrogen technologies such as electrolysis and fuel cell in recent times allow for more efficient and less costly conversion between electrical energy and hydrogen. Electric frameworks dependent on hydrogen energy are now being used as a replacement for big energy storages like battery. The power variations become smoother when a hydrogen-based energy system is used that has a storage of high levels of pressure as opposed to electrical systems that generate significant amount power from conventional wind or solar energies. In order to interconnect an electrolyser and fuel cell inside of a grid distribution system with low level of voltage, higher efficiency, and reliability, a bidirectional multilevel current source inverter is utilized. A simulation model of the planned structure is developed utilizing MATLAB/Simulink, showcasing the appropriate behavior under different circumstances.","PeriodicalId":6768,"journal":{"name":"2020 IEEE International Conference on Power and Energy (PECon)","volume":"28 1","pages":"153-158"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Power and Energy (PECon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECon48942.2020.9314536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This manuscript proposes a robust hydrogen-based grid system to improve the power quality of the microgrid. Advancement in hydrogen technologies such as electrolysis and fuel cell in recent times allow for more efficient and less costly conversion between electrical energy and hydrogen. Electric frameworks dependent on hydrogen energy are now being used as a replacement for big energy storages like battery. The power variations become smoother when a hydrogen-based energy system is used that has a storage of high levels of pressure as opposed to electrical systems that generate significant amount power from conventional wind or solar energies. In order to interconnect an electrolyser and fuel cell inside of a grid distribution system with low level of voltage, higher efficiency, and reliability, a bidirectional multilevel current source inverter is utilized. A simulation model of the planned structure is developed utilizing MATLAB/Simulink, showcasing the appropriate behavior under different circumstances.