{"title":"Design of an Optimized Twin Mode Reconfigurable Adaptive FIR Filter Architecture for Speech Signal Processing","authors":"S. Padmapriya","doi":"10.33180/infmidem2019.406","DOIUrl":null,"url":null,"abstract":"Reconfigurability, low complexity and low power are the key requirements of FIR filters employed in multi-standard wireless communication systems. Digital Filters are used to filter the audio data stream and increase the reliability of speech signal. Therefore, it is imperative to design an area optimized and low power based reconfigurable FIR filter architectures. The reconfigurable architecture designed in this research is capable of achieving lower adaptation-delay and area-delay-power efficient implementation of a Delayed Least Mean Square (DLMS) adaptive filter with reversible logic gates. The Optimized Adaptive Reconfigurable Adaptive Reconfigurable (OAR) FIR filter architectures are proposed. The optimized architectures are implemented across the combinational blocks by reducing the pipeline delays, sampling period, energy consumption and area, to increase the Power-Delay Product (PDP) and Energy Per Sample (EPS).The noisy speech signals are used for verifying the efficiency of the proposed architectures. The efficiency of the architecture is verified by implementing the proposed scheme in signal corrupted by various real-time noises at different Signal to Noise Ratios (SNRs).","PeriodicalId":56293,"journal":{"name":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","volume":"20 1","pages":"241-254"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33180/infmidem2019.406","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Reconfigurability, low complexity and low power are the key requirements of FIR filters employed in multi-standard wireless communication systems. Digital Filters are used to filter the audio data stream and increase the reliability of speech signal. Therefore, it is imperative to design an area optimized and low power based reconfigurable FIR filter architectures. The reconfigurable architecture designed in this research is capable of achieving lower adaptation-delay and area-delay-power efficient implementation of a Delayed Least Mean Square (DLMS) adaptive filter with reversible logic gates. The Optimized Adaptive Reconfigurable Adaptive Reconfigurable (OAR) FIR filter architectures are proposed. The optimized architectures are implemented across the combinational blocks by reducing the pipeline delays, sampling period, energy consumption and area, to increase the Power-Delay Product (PDP) and Energy Per Sample (EPS).The noisy speech signals are used for verifying the efficiency of the proposed architectures. The efficiency of the architecture is verified by implementing the proposed scheme in signal corrupted by various real-time noises at different Signal to Noise Ratios (SNRs).
期刊介绍:
Informacije MIDEM publishes original research papers in the fields of microelectronics, electronic components and materials. Review papers are published upon invitation only. Scientific novelty and potential interest for a wider spectrum of readers is desired. Authors are encouraged to provide as much detail as possible for others to be able to replicate their results. Therefore, there is no page limit, provided that the text is concise and comprehensive, and any data that does not fit within a classical manuscript can be added as supplementary material.
Topics of interest include:
Microelectronics,
Semiconductor devices,
Nanotechnology,
Electronic circuits and devices,
Electronic sensors and actuators,
Microelectromechanical systems (MEMS),
Medical electronics,
Bioelectronics,
Power electronics,
Embedded system electronics,
System control electronics,
Signal processing,
Microwave and millimetre-wave techniques,
Wireless and optical communications,
Antenna technology,
Optoelectronics,
Photovoltaics,
Ceramic materials for electronic devices,
Thick and thin film materials for electronic devices.