R. Saive, Hal S. Emmer, Christopher T. Chen, Chaomin Zhang, C. Honsberg, H. Atwater
{"title":"GaP/Si Heterojunction Solar Cells: An Interface, Doping and Morphology Study","authors":"R. Saive, Hal S. Emmer, Christopher T. Chen, Chaomin Zhang, C. Honsberg, H. Atwater","doi":"10.1109/PVSC.2018.8547704","DOIUrl":null,"url":null,"abstract":"We report on an study of the GaP/Si interface for application in silicon heterojunction solar cells. We analyzed the band alignment using X-ray photoelectron spectroscopy (XPS) and cross-sectional Kelvin probe force microscopy (x-KPFM). Our measurements show a high conduction band offset (0.9 eV) leading to a barrier in electron extraction which we microscopically resolved via x-KPFM. XPS reveals the presence of Si-Ga bonds which explains the observed interface dipole that leads to low open circuit voltage and low fill factor in GaP/Si heterojunction solar cells. Furthermore, we investigated the electronic and morphologic changes in GaP upon Si and Mg doping.","PeriodicalId":6558,"journal":{"name":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","volume":"38 1","pages":"2064-2069"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2018.8547704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We report on an study of the GaP/Si interface for application in silicon heterojunction solar cells. We analyzed the band alignment using X-ray photoelectron spectroscopy (XPS) and cross-sectional Kelvin probe force microscopy (x-KPFM). Our measurements show a high conduction band offset (0.9 eV) leading to a barrier in electron extraction which we microscopically resolved via x-KPFM. XPS reveals the presence of Si-Ga bonds which explains the observed interface dipole that leads to low open circuit voltage and low fill factor in GaP/Si heterojunction solar cells. Furthermore, we investigated the electronic and morphologic changes in GaP upon Si and Mg doping.