D. Hisamoto, S. Saito, A. Shima, H. Yoshimoto, K. Torii
{"title":"New type steep-S device using the bipolar action","authors":"D. Hisamoto, S. Saito, A. Shima, H. Yoshimoto, K. Torii","doi":"10.1109/SNW.2012.6243314","DOIUrl":null,"url":null,"abstract":"We have proposed an alternative approach for developing a steep subthreshold swing FET that is less than the theoretical diffusion-based limit of 60 mV/decade at room temperature. Instead of using a simple IGFET, we formed a complex device in a “single device” and worked it as a sub-circuit, which resulted in a steep subthreshold swing. We formed a tunnel junction in a drain diffusion layer of the MOSFET so that we could stuff a tunnel-injection bipolar, a resistor, and a MOSFET inside a single “scaled MOSFET”. We used device simulation to clarify the concept of “device complex”. Results showed a steep subthreshold swing even if the supply voltage was low (~0.2 V).","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"76 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2012.6243314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We have proposed an alternative approach for developing a steep subthreshold swing FET that is less than the theoretical diffusion-based limit of 60 mV/decade at room temperature. Instead of using a simple IGFET, we formed a complex device in a “single device” and worked it as a sub-circuit, which resulted in a steep subthreshold swing. We formed a tunnel junction in a drain diffusion layer of the MOSFET so that we could stuff a tunnel-injection bipolar, a resistor, and a MOSFET inside a single “scaled MOSFET”. We used device simulation to clarify the concept of “device complex”. Results showed a steep subthreshold swing even if the supply voltage was low (~0.2 V).