TCAD-Enabled Machine Learning Defect Prediction to Accelerate Advanced Semiconductor Device Failure Analysis

C. Teo, Kain Lu Low, V. Narang, A. Thean
{"title":"TCAD-Enabled Machine Learning Defect Prediction to Accelerate Advanced Semiconductor Device Failure Analysis","authors":"C. Teo, Kain Lu Low, V. Narang, A. Thean","doi":"10.1109/sispad.2019.8870440","DOIUrl":null,"url":null,"abstract":"In this work, we present a unique approach of combining TCAD modelling and machine learning to detect the defect locations of a bridging defect in a single-fin FinFET. The prediction of the defect location is guided by the predictive model consisting of Random Forest algorithm which is trained with the measureable electrical attributes from the I-V. High accuracy in predicting the defect location is achieved by the proposed scheme which can further enhance the FA success rate, expediting the cycle of design to product.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"2 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sispad.2019.8870440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

In this work, we present a unique approach of combining TCAD modelling and machine learning to detect the defect locations of a bridging defect in a single-fin FinFET. The prediction of the defect location is guided by the predictive model consisting of Random Forest algorithm which is trained with the measureable electrical attributes from the I-V. High accuracy in predicting the defect location is achieved by the proposed scheme which can further enhance the FA success rate, expediting the cycle of design to product.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持tcad的机器学习缺陷预测加速先进半导体器件故障分析
在这项工作中,我们提出了一种结合TCAD建模和机器学习的独特方法来检测单鳍FinFET中桥接缺陷的缺陷位置。缺陷位置的预测由随机森林算法组成的预测模型指导,该模型由可测量的电属性训练而成。该方法对缺陷位置的预测精度较高,进一步提高了缺陷分析的成功率,加快了从设计到产品的周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Stacking Faults on the Thermoelectric Figure of Merit of Si Nanowires Effect of Trap on Carrier Transport in InAs FET with Al2 O3 Oxide: DFT-based NEGF simulations Defect creation and Diffusion under electric fields from first-principles: the prototypical case of silicon dioxide Quantum Transport Simulations of the Zero Temperature Coefficient in Gate-all-around Nanowire pFETs Electronic and structural properties of interstitial titanium in crystalline silicon from first-principles simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1