Tradeoff between mass sensitivity and performance in quasi-zero stiffness vibration isolators

IF 1.3 4区 医学 Q3 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY Noise & Health Pub Date : 2023-05-25 DOI:10.3397/nc_2023_0139
P. Gilmore, U. Gandhi, S. M. S. Shaihan, R. Rangarajan
{"title":"Tradeoff between mass sensitivity and performance in quasi-zero stiffness vibration isolators","authors":"P. Gilmore, U. Gandhi, S. M. S. Shaihan, R. Rangarajan","doi":"10.3397/nc_2023_0139","DOIUrl":null,"url":null,"abstract":"Quasi-zero stiffness isolators are a promising technology to reduce vibration transmission over a large frequency range while maintaining passive operation and low cost. Many different types of QZS isolators have been demonstrated utilizing a variety of mechanical, pneumatic, and magnetic\n components. While some of these types have their own unique challenges, other challenges are more general. Two of these challenges are mass sensitivity and hysteresis in the load-deflection curve caused by snap-through buckling, friction, or structural damping. This work investigates the impact\n of force-deflection hysteresis on isolation performance through experimental techniques. Results show that increasing hysteresis reduces the mass sensitivity but worsens the isolation performance at low frequencies. A tradeoff must be made between these two aspects but can be overcome by shifting\n the QZS region to difference forces. A simple method to achieve this adaptability exists for certain types of QZS structures, therefore enabling a variety of practical applications within a certain design window.","PeriodicalId":19195,"journal":{"name":"Noise & Health","volume":"68 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise & Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3397/nc_2023_0139","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Quasi-zero stiffness isolators are a promising technology to reduce vibration transmission over a large frequency range while maintaining passive operation and low cost. Many different types of QZS isolators have been demonstrated utilizing a variety of mechanical, pneumatic, and magnetic components. While some of these types have their own unique challenges, other challenges are more general. Two of these challenges are mass sensitivity and hysteresis in the load-deflection curve caused by snap-through buckling, friction, or structural damping. This work investigates the impact of force-deflection hysteresis on isolation performance through experimental techniques. Results show that increasing hysteresis reduces the mass sensitivity but worsens the isolation performance at low frequencies. A tradeoff must be made between these two aspects but can be overcome by shifting the QZS region to difference forces. A simple method to achieve this adaptability exists for certain types of QZS structures, therefore enabling a variety of practical applications within a certain design window.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
准零刚度隔振器质量灵敏度与性能的权衡
准零刚度隔振器是一种很有前途的技术,可以在大频率范围内减少振动传输,同时保持被动运行和低成本。许多不同类型的QZS隔离器已被证明利用各种机械,气动和磁性元件。虽然其中一些类型有自己独特的挑战,但其他挑战更为普遍。其中两个挑战是质量敏感性和负载-挠度曲线中的滞后,这是由屈曲、摩擦或结构阻尼引起的。本文通过实验技术研究了力-挠度滞回对隔振性能的影响。结果表明,增大磁滞会降低质量灵敏度,但会使低频隔离性能恶化。必须在这两个方面之间进行权衡,但可以通过将QZS区域转移到不同的力来克服。对于某些类型的QZS结构,存在一种简单的方法来实现这种适应性,从而在一定的设计窗口内实现各种实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Noise & Health
Noise & Health AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY-PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
CiteScore
2.10
自引率
14.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: Noise and Health is the only International Journal devoted to research on all aspects of noise and its effects on human health. An inter-disciplinary journal for all professions concerned with auditory and non-auditory effects of occupational, environmental, and leisure noise. It aims to provide a forum for presentation of novel research material on a broad range of topics associated with noise pollution, its control and its detrimental effects on hearing and health. It will cover issues from basic experimental science through clinical evaluation and management, technical aspects of noise reduction systems and solutions to environmental issues relating to social and public health policy.
期刊最新文献
A Simplified Version of the Chinese Tinnitus Disorder Scale and its Psychometric Characteristics. Analysis of Therapeutic Options for Noise-Induced Hearing Loss: Retroauricular Injection of Methylprednisolone Sodium Succinate Combined with Hyperbaric Oxygenation. Application of Mozart's Sonata for Two Pianos in D Major in Children with Epilepsy and Effect of Acoustic Quality on Epileptic Discharges. Application of Music Therapy in Improving Sleep Quality and Psychological Health of Pregnant Women with Hypertension: A Retrospective Study. Application of Music Therapy in Improving the Sleep Quality and Mental Health of Nurses with Circadian Rhythm Sleep Disorders Caused by Work Shifts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1