Using Logistic Regression Method to Predict Protein Function from Protein-Protein Interaction Data

Qingshan Ni, Zheng-Zhi Wang, Qingjuan Han, Gangguo Li, Xiaomin Wang, Guangyun Wang
{"title":"Using Logistic Regression Method to Predict Protein Function from Protein-Protein Interaction Data","authors":"Qingshan Ni, Zheng-Zhi Wang, Qingjuan Han, Gangguo Li, Xiaomin Wang, Guangyun Wang","doi":"10.1109/ICBBE.2009.5163737","DOIUrl":null,"url":null,"abstract":"Protein function determination is one of the most important issues in biology research. In this paper, a new method, which is based on logistic regression method, is introduced to predict protein function from protein-protein interaction data. In the proposed method, associations among different functions are taken into account by representing a protein using all the functional annotations of its interaction protein partners. We apply our method to a constructed data set for yeast based upon protein function classifications of FunCat scheme and upon the interaction networks collected from BioGrid. The results obtained by 3-fold cross-validation test show that the proposed method can obtain desirable results for protein function prediction and outperforms some existing approaches based on protein-protein interaction data.","PeriodicalId":6430,"journal":{"name":"2009 3rd International Conference on Bioinformatics and Biomedical Engineering","volume":"3 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3rd International Conference on Bioinformatics and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBBE.2009.5163737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Protein function determination is one of the most important issues in biology research. In this paper, a new method, which is based on logistic regression method, is introduced to predict protein function from protein-protein interaction data. In the proposed method, associations among different functions are taken into account by representing a protein using all the functional annotations of its interaction protein partners. We apply our method to a constructed data set for yeast based upon protein function classifications of FunCat scheme and upon the interaction networks collected from BioGrid. The results obtained by 3-fold cross-validation test show that the proposed method can obtain desirable results for protein function prediction and outperforms some existing approaches based on protein-protein interaction data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用逻辑回归方法预测蛋白质-蛋白质相互作用数据中的蛋白质功能
蛋白质功能测定是生物学研究的重要课题之一。本文提出了一种基于逻辑回归方法的蛋白质相互作用数据预测蛋白质功能的新方法。在提出的方法中,通过使用其相互作用蛋白伙伴的所有功能注释来表示蛋白质,从而考虑了不同功能之间的关联。我们基于FunCat方案的蛋白质功能分类和从BioGrid收集的相互作用网络,将我们的方法应用于酵母的构建数据集。3倍交叉验证试验结果表明,该方法能够获得较好的蛋白质功能预测结果,并且优于现有的基于蛋白质-蛋白质相互作用数据的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Asparagus saponins on HepG2 Apoptosis and Mitochondrial Membrane Potential and ROS Level The Prediction of Pollution on Underground Water from Ash-Water of Power Plant Ash-Field Life Loss Evaluation of Dam Failure Based on VOF Method Experiment Study of Fluoride Desorption with Groundwater Infiltration in Soil A Novel Method Evaluating Vascular Resistance Based on Fourier Analysis for Pulse Waveform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1