Vascular network formation in silico using the extended cellular potts model

D. Svoboda, V. Ulman, Peter Kovác, B. Salingova, L. Tesarová, I. Koutná, P. Matula
{"title":"Vascular network formation in silico using the extended cellular potts model","authors":"D. Svoboda, V. Ulman, Peter Kovác, B. Salingova, L. Tesarová, I. Koutná, P. Matula","doi":"10.1109/ICIP.2016.7532946","DOIUrl":null,"url":null,"abstract":"Cardiovascular diseases belong to the most widespread illnesses in the developed countries. Therefore, the regenerative medicine and tissue modeling applications are highly interested in studying the ability of endothelial cells, derived from human stem cells, to form vascular networks. Several characteristics can be measured on images of these networks and hence describe the quality of the endothelial cells. With advances in the image processing, automatic analysis of these complex images becomes increasingly common. In this study, we introduce a new graph structure and additional constraints to the cellular Potts model, a framework commonly utilized in computational biology. Our extension allows to generate visually plausible synthetic image sequences of evolving fluorescently labeled vascular networks with ground truth data. Such generated datasets can be subsequently used for testing and validating methods employed for the analysis and measurement of the images of real vascular networks.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"158 1","pages":"3180-3183"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Cardiovascular diseases belong to the most widespread illnesses in the developed countries. Therefore, the regenerative medicine and tissue modeling applications are highly interested in studying the ability of endothelial cells, derived from human stem cells, to form vascular networks. Several characteristics can be measured on images of these networks and hence describe the quality of the endothelial cells. With advances in the image processing, automatic analysis of these complex images becomes increasingly common. In this study, we introduce a new graph structure and additional constraints to the cellular Potts model, a framework commonly utilized in computational biology. Our extension allows to generate visually plausible synthetic image sequences of evolving fluorescently labeled vascular networks with ground truth data. Such generated datasets can be subsequently used for testing and validating methods employed for the analysis and measurement of the images of real vascular networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用扩展细胞波模型在计算机上形成血管网络
心血管疾病是发达国家最普遍的疾病之一。因此,再生医学和组织建模应用对研究源自人类干细胞的内皮细胞形成血管网络的能力非常感兴趣。在这些网络的图像上可以测量出几个特征,从而描述内皮细胞的质量。随着图像处理技术的进步,这些复杂图像的自动分析变得越来越普遍。在这项研究中,我们引入了一个新的图结构和额外的约束到细胞Potts模型,一个通常用于计算生物学的框架。我们的扩展允许生成视觉上合理的合成图像序列的演变荧光标记血管网络与地面真实数据。这些生成的数据集随后可用于测试和验证用于分析和测量真实血管网络图像的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1