首页 > 最新文献

SASHIMI@MICCAI最新文献

英文 中文
How Good Are Synthetic Medical Images? An Empirical Study with Lung Ultrasound 合成医学影像有多好?肺部超声实证研究
Pub Date : 2023-10-05 DOI: 10.1007/978-3-031-44689-4_8
Menghan Yu, Sourabh Kulhare, C. Mehanian, Charles B Delahunt, Daniel E Shea, Zohreh Laverriere, Ishan Shah, M. Horning
{"title":"How Good Are Synthetic Medical Images? An Empirical Study with Lung Ultrasound","authors":"Menghan Yu, Sourabh Kulhare, C. Mehanian, Charles B Delahunt, Daniel E Shea, Zohreh Laverriere, Ishan Shah, M. Horning","doi":"10.1007/978-3-031-44689-4_8","DOIUrl":"https://doi.org/10.1007/978-3-031-44689-4_8","url":null,"abstract":"","PeriodicalId":150099,"journal":{"name":"SASHIMI@MICCAI","volume":"8 1","pages":"75-85"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139322953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphology-Preserving Autoregressive 3D Generative Modelling of the Brain 脑形态保持自回归三维生成模型
Pub Date : 2022-09-07 DOI: 10.1007/978-3-031-16980-9_7
Petru-Daniel Tudosiu, W. H. Pinaya, M. Graham, Pedro Borges, Virginia Fernandez, Dai-gang Yang, J. Appleyard, G. Novati, Disha Mehra, M. Vella, P. Nachev, S. Ourselin, M. Cardoso
{"title":"Morphology-Preserving Autoregressive 3D Generative Modelling of the Brain","authors":"Petru-Daniel Tudosiu, W. H. Pinaya, M. Graham, Pedro Borges, Virginia Fernandez, Dai-gang Yang, J. Appleyard, G. Novati, Disha Mehra, M. Vella, P. Nachev, S. Ourselin, M. Cardoso","doi":"10.1007/978-3-031-16980-9_7","DOIUrl":"https://doi.org/10.1007/978-3-031-16980-9_7","url":null,"abstract":"","PeriodicalId":150099,"journal":{"name":"SASHIMI@MICCAI","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126553920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
HealthyGAN: Learning from Unannotated Medical Images to Detect Anomalies Associated with Human Disease HealthyGAN:从未注释的医学图像中学习以检测与人类疾病相关的异常
Pub Date : 2022-09-05 DOI: 10.1007/978-3-031-16980-9_5
M. R. Siddiquee, Jay Shah, Teresa Wu, C. Chong, T. Schwedt, Baoxin Li
{"title":"HealthyGAN: Learning from Unannotated Medical Images to Detect Anomalies Associated with Human Disease","authors":"M. R. Siddiquee, Jay Shah, Teresa Wu, C. Chong, T. Schwedt, Baoxin Li","doi":"10.1007/978-3-031-16980-9_5","DOIUrl":"https://doi.org/10.1007/978-3-031-16980-9_5","url":null,"abstract":"","PeriodicalId":150099,"journal":{"name":"SASHIMI@MICCAI","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114308251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Brain Lesion Synthesis via Progressive Adversarial Variational Auto-Encoder 通过渐进式对抗性变分自编码器合成脑损伤
Pub Date : 2022-08-05 DOI: 10.48550/arXiv.2208.03203
Jiayu Huo, V. Vakharia, Chengyuan Wu, A. Sharan, A. Ko, S. Ourselin, R. Sparks
, Abstract. Laser interstitial thermal therapy (LITT) is a novel minimally invasive treatment that is used to ablate intracranial structures to treat mesial temporal lobe epilepsy (MTLE). Region of interest (ROI) segmentation before and after LITT would enable automated lesion quantification to objectively assess treatment efficacy. Deep learning tech-niques, such as convolutional neural networks (CNNs) are state-of-the-art solutions for ROI segmentation, but require large amounts of anno-tated data during the training. However, collecting large datasets from emerging treatments such as LITT is impractical. In this paper, we propose a progressive brain lesion synthesis framework (PAVAE) to expand both the quantity and diversity of the training dataset. Concretely, our framework consists of two sequential networks: a mask synthesis network and a mask-guided lesion synthesis network. To better employ extrinsic information to provide additional supervision during network training, we design a condition embedding block (CEB) and a mask embedding block (MEB) to encode inherent conditions of masks to the feature space. Finally, a segmentation network is trained using raw and synthetic lesion images to evaluate the effectiveness of the proposed framework. Experimental results show that our method can achieve realistic synthetic results and boost the performance of down-stream segmentation tasks above traditional
、抽象。激光间质热疗法(LITT)是一种新型的微创治疗方法,用于消融颅内结构治疗内侧颞叶癫痫(MTLE)。LITT前后感兴趣区域(ROI)分割可以实现病灶的自动量化,客观评估治疗效果。深度学习技术,如卷积神经网络(cnn)是ROI分割的最新解决方案,但在训练过程中需要大量注释数据。然而,从像LITT这样的新兴疗法中收集大型数据集是不切实际的。在本文中,我们提出了一个渐进式脑损伤综合框架(PAVAE)来扩展训练数据集的数量和多样性。具体来说,我们的框架由两个顺序网络组成:一个掩模合成网络和一个掩模引导的病变合成网络。为了更好地利用外部信息在网络训练过程中提供额外的监督,我们设计了条件嵌入块(CEB)和掩码嵌入块(MEB),将掩码的固有条件编码到特征空间中。最后,使用原始和合成病变图像训练分割网络,以评估所提出框架的有效性。实验结果表明,该方法可以获得真实的合成结果,并在下游分割任务中提高了传统方法的性能
{"title":"Brain Lesion Synthesis via Progressive Adversarial Variational Auto-Encoder","authors":"Jiayu Huo, V. Vakharia, Chengyuan Wu, A. Sharan, A. Ko, S. Ourselin, R. Sparks","doi":"10.48550/arXiv.2208.03203","DOIUrl":"https://doi.org/10.48550/arXiv.2208.03203","url":null,"abstract":", Abstract. Laser interstitial thermal therapy (LITT) is a novel minimally invasive treatment that is used to ablate intracranial structures to treat mesial temporal lobe epilepsy (MTLE). Region of interest (ROI) segmentation before and after LITT would enable automated lesion quantification to objectively assess treatment efficacy. Deep learning tech-niques, such as convolutional neural networks (CNNs) are state-of-the-art solutions for ROI segmentation, but require large amounts of anno-tated data during the training. However, collecting large datasets from emerging treatments such as LITT is impractical. In this paper, we propose a progressive brain lesion synthesis framework (PAVAE) to expand both the quantity and diversity of the training dataset. Concretely, our framework consists of two sequential networks: a mask synthesis network and a mask-guided lesion synthesis network. To better employ extrinsic information to provide additional supervision during network training, we design a condition embedding block (CEB) and a mask embedding block (MEB) to encode inherent conditions of masks to the feature space. Finally, a segmentation network is trained using raw and synthetic lesion images to evaluate the effectiveness of the proposed framework. Experimental results show that our method can achieve realistic synthetic results and boost the performance of down-stream segmentation tasks above traditional","PeriodicalId":150099,"journal":{"name":"SASHIMI@MICCAI","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122805204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Subject-Specific Lesion Generation and Pseudo-Healthy Synthesis for Multiple Sclerosis Brain Images 多发性硬化症脑图像的受试者特异性病变生成和伪健康合成
Pub Date : 2022-08-03 DOI: 10.48550/arXiv.2208.02135
Berke Doga Basaran, Mengyun Qiao, P. Matthews, Wenjia Bai
Understanding the intensity characteristics of brain lesions is key for defining image-based biomarkers in neurological studies and for predicting disease burden and outcome. In this work, we present a novel foreground-based generative method for modelling the local lesion characteristics that can both generate synthetic lesions on healthy images and synthesize subject-specific pseudo-healthy images from pathological images. Furthermore, the proposed method can be used as a data augmentation module to generate synthetic images for training brain image segmentation networks. Experiments on multiple sclerosis (MS) brain images acquired on magnetic resonance imaging (MRI) demonstrate that the proposed method can generate highly realistic pseudo-healthy and pseudo-pathological brain images. Data augmentation using the synthetic images improves the brain image segmentation performance compared to traditional data augmentation methods as well as a recent lesion-aware data augmentation technique, CarveMix. The code will be released at https://github.com/dogabasaran/lesion-synthesis.
了解脑病变的强度特征是在神经学研究中定义基于图像的生物标志物以及预测疾病负担和结果的关键。在这项工作中,我们提出了一种新的基于前景的局部病变特征建模生成方法,该方法既可以在健康图像上生成合成病变,也可以从病理图像合成受试者特定的伪健康图像。此外,该方法还可以作为数据增强模块生成用于训练脑图像分割网络的合成图像。对磁共振成像(MRI)获取的多发性硬化症(MS)脑图像进行实验,结果表明该方法可以生成高逼真度的伪健康和伪病理脑图像。与传统的数据增强方法以及最近的病变感知数据增强技术CarveMix相比,使用合成图像进行数据增强可以提高大脑图像分割性能。代码将在https://github.com/dogabasaran/lesion-synthesis上发布。
{"title":"Subject-Specific Lesion Generation and Pseudo-Healthy Synthesis for Multiple Sclerosis Brain Images","authors":"Berke Doga Basaran, Mengyun Qiao, P. Matthews, Wenjia Bai","doi":"10.48550/arXiv.2208.02135","DOIUrl":"https://doi.org/10.48550/arXiv.2208.02135","url":null,"abstract":"Understanding the intensity characteristics of brain lesions is key for defining image-based biomarkers in neurological studies and for predicting disease burden and outcome. In this work, we present a novel foreground-based generative method for modelling the local lesion characteristics that can both generate synthetic lesions on healthy images and synthesize subject-specific pseudo-healthy images from pathological images. Furthermore, the proposed method can be used as a data augmentation module to generate synthetic images for training brain image segmentation networks. Experiments on multiple sclerosis (MS) brain images acquired on magnetic resonance imaging (MRI) demonstrate that the proposed method can generate highly realistic pseudo-healthy and pseudo-pathological brain images. Data augmentation using the synthetic images improves the brain image segmentation performance compared to traditional data augmentation methods as well as a recent lesion-aware data augmentation technique, CarveMix. The code will be released at https://github.com/dogabasaran/lesion-synthesis.","PeriodicalId":150099,"journal":{"name":"SASHIMI@MICCAI","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122570717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
The Role of MRI Physics in Brain Segmentation CNNs: Achieving Acquisition Invariance and Instructive Uncertainties MRI物理在脑分割cnn中的作用:实现获取不变性和指导性不确定性
Pub Date : 2021-11-04 DOI: 10.1007/978-3-030-87592-3_7
Pedro Borges, Richard Shaw, Thomas Varsavsky, Kerstin Kläser, David Thomas, I. Drobnjak, S. Ourselin, M. Cardoso
{"title":"The Role of MRI Physics in Brain Segmentation CNNs: Achieving Acquisition Invariance and Instructive Uncertainties","authors":"Pedro Borges, Richard Shaw, Thomas Varsavsky, Kerstin Kläser, David Thomas, I. Drobnjak, S. Ourselin, M. Cardoso","doi":"10.1007/978-3-030-87592-3_7","DOIUrl":"https://doi.org/10.1007/978-3-030-87592-3_7","url":null,"abstract":"","PeriodicalId":150099,"journal":{"name":"SASHIMI@MICCAI","volume":"333 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116370310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DyeFreeNet: Deep Virtual Contrast CT Synthesis 染料freenet:深度虚拟对比CT合成
Pub Date : 2020-10-04 DOI: 10.1007/978-3-030-59520-3_9
Jingya Liu, Yingli Tian, A. Ağıldere, K. Haberal, M. Coşkun, C. Duzgol, O. Akin
{"title":"DyeFreeNet: Deep Virtual Contrast CT Synthesis","authors":"Jingya Liu, Yingli Tian, A. Ağıldere, K. Haberal, M. Coşkun, C. Duzgol, O. Akin","doi":"10.1007/978-3-030-59520-3_9","DOIUrl":"https://doi.org/10.1007/978-3-030-59520-3_9","url":null,"abstract":"","PeriodicalId":150099,"journal":{"name":"SASHIMI@MICCAI","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116906024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
An Unsupervised Adversarial Learning Approach to Fundus Fluorescein Angiography Image Synthesis for Leakage Detection 一种无监督对抗学习方法用于眼底荧光素血管造影图像的泄漏检测
Pub Date : 2020-10-04 DOI: 10.1007/978-3-030-59520-3_15
Wanyue Li, Yi He, Jing Wang, Wen Kong, Yiwei Chen, Guohua Shi
{"title":"An Unsupervised Adversarial Learning Approach to Fundus Fluorescein Angiography Image Synthesis for Leakage Detection","authors":"Wanyue Li, Yi He, Jing Wang, Wen Kong, Yiwei Chen, Guohua Shi","doi":"10.1007/978-3-030-59520-3_15","DOIUrl":"https://doi.org/10.1007/978-3-030-59520-3_15","url":null,"abstract":"","PeriodicalId":150099,"journal":{"name":"SASHIMI@MICCAI","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123827326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Train Small, Generate Big: Synthesis of Colorectal Cancer Histology Images 训练小,生成大:大肠癌组织学图像的合成
Pub Date : 2020-10-04 DOI: 10.1007/978-3-030-59520-3_17
Srijay Deshpande, F. Minhas, N. Rajpoot
{"title":"Train Small, Generate Big: Synthesis of Colorectal Cancer Histology Images","authors":"Srijay Deshpande, F. Minhas, N. Rajpoot","doi":"10.1007/978-3-030-59520-3_17","DOIUrl":"https://doi.org/10.1007/978-3-030-59520-3_17","url":null,"abstract":"","PeriodicalId":150099,"journal":{"name":"SASHIMI@MICCAI","volume":"2009 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125652503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
High-Quality Interpolation of Breast DCE-MRI Using Learned Transformations 使用学习变换的乳腺DCE-MRI高质量插值
Pub Date : 2020-10-04 DOI: 10.1007/978-3-030-59520-3_6
Hongyu Wang, Jun Feng, Xiaoying Pan, Di Yang, Bao-ying Chen
{"title":"High-Quality Interpolation of Breast DCE-MRI Using Learned Transformations","authors":"Hongyu Wang, Jun Feng, Xiaoying Pan, Di Yang, Bao-ying Chen","doi":"10.1007/978-3-030-59520-3_6","DOIUrl":"https://doi.org/10.1007/978-3-030-59520-3_6","url":null,"abstract":"","PeriodicalId":150099,"journal":{"name":"SASHIMI@MICCAI","volume":"90 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133223785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
SASHIMI@MICCAI
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1