{"title":"Virtual Image from EEG to Recognize Appropriate Emotion using Convolutional Neural Network","authors":"M. Islam, Mohiudding Ahmad","doi":"10.1109/ICASERT.2019.8934760","DOIUrl":null,"url":null,"abstract":"Electroencephalogram (EEG) that measures the electrical activity of the brain has been used extensively to recognize emotion. Normally feature based emotion recognition requires a strong effort to design the perfect feature or feature set related to the classification of emotion. To curtail the manual human effort we designed a model by using a virtual image from EEG with Convolutional Neural Network (CNN). Initially, we calculated Pearson’s correlation coefficients form different sub-bands of EEG to formulate a virtual image. Later, this virtual image was fed into a CNN architecture to classify emotion. We made two distinct protocols; between these, protocol-1 was to classify positive and negative emotion and protocol-2 was to classify four distinct emotions. An overall maximum accuracy of 81.51% on valence and 79.42% on arousal was obtained by using internationally authorized DEAP dataset. Our proposed method is helpful in recognizing emotions efficiently.","PeriodicalId":6613,"journal":{"name":"2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT)","volume":"19 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASERT.2019.8934760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Electroencephalogram (EEG) that measures the electrical activity of the brain has been used extensively to recognize emotion. Normally feature based emotion recognition requires a strong effort to design the perfect feature or feature set related to the classification of emotion. To curtail the manual human effort we designed a model by using a virtual image from EEG with Convolutional Neural Network (CNN). Initially, we calculated Pearson’s correlation coefficients form different sub-bands of EEG to formulate a virtual image. Later, this virtual image was fed into a CNN architecture to classify emotion. We made two distinct protocols; between these, protocol-1 was to classify positive and negative emotion and protocol-2 was to classify four distinct emotions. An overall maximum accuracy of 81.51% on valence and 79.42% on arousal was obtained by using internationally authorized DEAP dataset. Our proposed method is helpful in recognizing emotions efficiently.